期刊文献+

基于同质区域分割的高光谱图像混合噪声估计 被引量:2

Hybrid Noise Estimation Based on Homogeneous Regions Segmentation in Hyperspectral Images
下载PDF
导出
摘要 降低高光谱(Hyperspectral,HS)图像中的噪声以提高图像质量一直是遥感图像处理领域的研究热点,而HS图像带有的混合光电噪声却难于准确估计,为此提出一种基于同性质区域(Homogeneous Region,HR)分割的HS图像混合噪声估计方法。首先结合HS图像的空间和光谱特性进行HR分割,然后在HR内通过多元线性回归(Multiple Linear Regression,MLR)方法去除区域相关性从而得到混合噪声,最后引进比例因子对混合噪声的内部参数进行估计。通过在仿真HS数据和真实AVIRIS数据上进行实验表明,该方法能够有效地进行HR分割,且对混合噪声的估计结果要优于其它传统噪声估计方法。 Reducing the noise in hyperspectral (HS) images to enhance image quality has been a hot research field of remote sensing image processing, but hybrid optoeleetronie noise is difficult to precisely estimate. A new method for the HS hybrid noise estimation based on the homogeneous regions (HR) segmentation is proposed. The method makes HR segmentation by combining with spatial and spectral characteristics of the HS image first, and then removes correlation in regions by using multiple linear re- gression (MLR) to get the hybrid noise. Finally, the scale factor is introduced to estimate the internal parameters of the hybrid noise. The performance of this method is analyzed on simulated HS data and also applied to a well-known airborne visible infrared imaging spectrometer (AVIRIS) data. The experiment demonstrates this method improves the accuracies of segmentation and hy- brid noise estimation when compared to other approaches.
作者 孟玉
出处 《计算机与现代化》 2014年第2期77-80,128,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(60970069) 航天创新基金资助项目(2011XW0001) 国家863计划基金资助项目(2012AA011803)
关键词 高光谱图像 同性质区域分割 混合噪声 噪声估计 hyperspectral image homogeneous regions segmentation hybrid noise noise estimation
  • 相关文献

参考文献13

  • 1张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
  • 2Roger R E, Arnold J F. Reliably estimating the noise in AVIRIS hyperspectral images [ ] ]. International Journal of Remote Sensing, 1996,17(10) :1951-1962.
  • 3高连如,张兵,张霞,申茜.基于局部标准差的遥感图像噪声评估方法研究[J].遥感学报,2007,11(2):201-208. 被引量:54
  • 4Martin-Herrero J. Hybrid object labelling in digital images [ J ]. Machine Vision and Applications, 2007,18 ( 1 ) : 1-15.
  • 5Gao L R, Zhang B, Zhang X, et al. A new operational meth- od for estimating noise in hyperspectral images[J]. IEEE Ge- oscience and Remote Sensing Letters, 2008,5 ( 1 ) :83-87.
  • 6Martin-Herrero J. Comments on "a new operational method for estimating noise in hyperspectral images"[ J 1- IEEE Geo- science and Remote Sensing letters, 2008,5(4) :705-709.
  • 7Rakwatin P, Takeuchi W, Yasuoka Y. Stripe noise reduc- tion in MODIS data by combining histogram matching with facet filter [ J ]. IEEE Transactions on Geoscience and Re- mote Sensing, 2007,45(6) :1844-1856.
  • 8Uss M L, Vozel B, Lukin V V, et al. Local signal-de- pendent noise variance estimation from hyperspectral tex- tural images [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2011,5 ( 3 ) :469-486.
  • 9Qian Yuntao, Shen Yanhao, Ye Minchao, et al. 3-D non- local means filter with noise estimation for hyperspectral imagery denoising[ C l//Proceedings of the 2012 IEEE In- ternational Geoscience and Remote Sensing Symposium. 2012 : 1345-1348.
  • 10Qian Yuntao, Ye Minchao. Hyperspectral imagery restora- tion using nonloeal spectral-spatial structured sparse repre- sentation with noise estimation [ J ]. IEEE Journal of Select-ed Topics in Applied Earth Observations and Remote Sens- ing, 2013,6(2) :499-515.

二级参考文献25

  • 1Kruse F A, Lefkoff A B, Dietz J B. Remote Sensing of Environment, 1993, 44(2) : 309.
  • 2Kruse F A, Lefkoff A B, Boardman J W, et al. Remote Sensing Environment, 1993, 44(2) : 145.
  • 3de Carvalho Jr O A, Menese P R. JPL publication, 2000, 65: 74.
  • 4Baugh W M, Kruse F A, Atkinson W W, et al. Remote Sensing Environment, 1998, 65(3) : 292.
  • 5van der Meer F, Bakker W. Remote Sensing o{ Environment, 1997, 61(3): 371.
  • 6Roger N Clark, Andrea J Gallagher, Gregg A Swayze. JPL Publication, 1990, 176.
  • 7Roger N Clark, Gregg A Swayze, et al. Journal of Geophysical Research Version, 2002.
  • 8WANGJin-nian,ZHENGLan-fen,TONGQing-xi(王晋年,郑兰芬,童庆禧).RemoteSensingofEnvironmentChina(环境遥感),1996,11(1):20230.
  • 9Harsanyi J C, Chen-I Chang. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4) : 779.
  • 10Changshan Wu, Murray A T. Remote Sensing of Environment, 2003, 84(4) : 493.

共引文献100

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部