期刊文献+

基于非下采样Brushlet和马尔可夫随机场的图像分割

Image Segmentation Based on Nonsubsampled Brushlet and Markov Random Field
下载PDF
导出
摘要 针对传统小波域马尔可夫随机场图像分割算法的纹理图像分割能力的不足,提出一种将非下采样Brushlet变换和马尔可夫随机场相结合的纹理图像分割方法。用非下采样Brushlet变换作为图像分割的特征场,有效地提取纹理图像中的高维奇异信息;利用高斯马尔可夫模型提取特征场的参数,考察图像中的光谱信息以及像素点的空间相关性对分割结果的影响。实验表明,本文算法可以有效地实现纹理图像分割,在检测纹理方向信息和区域一致性上较传统算法有较大的提高。 In view of the shortages of conventional texture image segmentation based on Markov random field (MRF) in the wave- let domain, a segmentation method is proposed by combining nonsubsampled Brushlet transform and MRF. Nonsubsampled Brushlet transform is looked on as the feature field of the original image, which makes sure that the high dimensional singularity information of texture image is extracted effectively. And Gauss Markov model is used to compute the arguments of the feature field, which makes sure that the influences of the spectral information and the spatial correlations between pixels on the segmenta- tion result are considered. Experiments show that this algorithm can effectively achieve the texture image segmentation and it is of more great improvement than traditional algorithm in the detection of texture direction information and regional consistency.
出处 《计算机与现代化》 2014年第2期81-85,共5页 Computer and Modernization
基金 辽宁省教育厅一般研究项目(L2013422)
关键词 非下采样Brushlet变换 马尔可夫随机场 图像分割 迭代条件模式 最大后验概率准则 nonsubsampled Brushlet transform Markov random field (MRF) image segmentation ICM MAP criterion
  • 相关文献

参考文献5

二级参考文献52

  • 1曹永锋,孙洪,杨文,徐新.基于MPM准则的无监督SAR图像分割[J].武汉大学学报(信息科学版),2004,29(9):812-815. 被引量:4
  • 2李旭超,朱善安.FGMM-MRF层次模型在图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(12):2659-2664. 被引量:8
  • 3颜刚,陈武凡.图像分类数的自适应估计准则与最优分割算法[J].南方医科大学学报,2006,26(7):959-962. 被引量:1
  • 4汤凌,郑肇葆,虞欣.一种基于人工免疫的图像分割算法[J].武汉大学学报(信息科学版),2007,32(1):67-70. 被引量:16
  • 5Ryherd S,Woodcock C.Combining Spectral and Texture Data in the Segmentation of Remotely-Sensed Images [ J ].Photogrammetric Engineering & Remote Sensing, 1996, 62 (2) :181-194.
  • 6Chellappa R, Chatterjee S. Classification of Textures Using Gaussian Markov Random Fields [ J ]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33 (4) : 959-963.
  • 7Torres-Torriti M, Jouan A. Gabor vs. GMRF Features for SAR Imagery Classification [ A ]. ICIP [ C ]. 2001, (3) : 1043-1046.
  • 8Clausi D A, Bing Yue. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42( 1 ) : 215-228.
  • 9Rellier G, Descombes X, Falzon F, et al. Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (7) : 1543-1551.
  • 10Chellappa R, Hu Y H, Kung S Y. On Two-Dimensional Markov Spectral Estimation[ J]. IEEE Transactions on Acoustics, Speech,and Signal Processing, ASSP , 1983, 31(4) : 836-841.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部