期刊文献+

皮状丝孢酵母同步利用葡萄糖/木糖的糖转运动力学 被引量:2

Kinetics of sugar transport by Trichosporon cutaneum using simultaneous utilization of glucose and xylose
下载PDF
导出
摘要 皮状丝孢酵母(Trichosporon cutaneum)能够同步利用葡萄糖和木糖生产油脂。以2-脱氧葡萄糖(2-DOG)为底物,考察皮状丝孢酵母糖跨膜运输的转运动力学。结果表明:2-DOG转运符合米氏方程,表观米氏常数K m为0.19 mmol/L,最大转运速率V max为14.1 nmol/(min·mg)。葡萄糖和木糖均竞争性抑制2-DOG转运,葡萄糖表观抑制常数K i远低于木糖,表明存在一个共用转运体系,且该转运体系对葡萄糖亲和力更高。大量木糖与2-DOG同时转运到胞内,进一步说明木糖与葡萄糖共运输。代谢抑制剂和pH对糖转运有明显影响,说明质子/底物同向运输系统是该酵母的主要糖转运系统。 The yeast Trichosporon cutaneum can utilize glucose and xylose simultaneously for microbial lipid production. The sugar transport kinetics was studied by using 2-deoxyglucose ( 2-DOG ) as a surrogate substrate.It was found that kinetics data of 2-DOG transport fitted well to Michaelis-Menten plot and that the apparent Km of 0.19 mmol/L and Vmax of 14.1 nmol/( min·mg) were obtained.Both glucose and xylose inhibited competitively the transport of 2-DOG, indicating that these compounds shared the same transporter.The apparent inhibition constant Ki of glucose was much lower than that of xylose, suggesting a higher affinity of the transporter to glucose than xylose.The fact that large amount of xylose was uptaken together with 2-DOG further supported the co-transport of glucose and xylose.As 2-DOG transport was sensitive to metabolic inhibitors and pH,an H+/sugar-symport system was suggested as the main sugar transporter.
出处 《生物加工过程》 CAS CSCD 2014年第1期18-22,共5页 Chinese Journal of Bioprocess Engineering
基金 国家重点基础研究发展计划(973计划)(2011CB707405)
关键词 同步利用 糖转运 同向运输 2-脱氧葡萄糖 皮状丝孢酵母 simultaneous utilization sugar transport symport system 2-deoxyglucose Trichosporon cutaneum
  • 相关文献

参考文献34

  • 1赵宗保.加快微生物油脂研究为生物柴油产业提供廉价原料[J].中国生物工程杂志,2005,25(2):8-11. 被引量:86
  • 2Huang C,Chen X F,Xiong L. Single cell oil production from low-cost substrates:the possibility and potential of its industrialization[J].{H}Biotechnology Advances,2013,(01):129-139.
  • 3Tao J,Dai C C,Yang Q Y. Production of biodiesel with acid hydrolysate of Populus euramevicana CV leaves by Rhodotorula glutinis[J].{H}INTERNATIONAL JOURNAL OF GREEN ENERGY,2010,(04):387-396.
  • 4Gong Z W,Shen H W,Wang Q. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process[J].Biotechnol Biofuels,2013.36.
  • 5Ha S J,Galazka J M,Kim S R. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation[J].{H}Proceedings of the National Academy of Sciences(USA),2011,(02):504-509.
  • 6Hector R E,Qureshi N,Hughes S R. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption[J].{H}Applied Microbiology and Biotechnology,2008,(04):675-684.
  • 7Ligthelm M E,Prior B A,Dupreez J C. An investigation of D-(1-C-13) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions[J].{H}Applied Microbiology and Biotechnology,1988,(03):293-296.
  • 8Fuhrmann G F,Volker B. Regulation of glucose transport in Saccharomyces cerevisiae[J].{H}Journal of Biotechnology,1992,(01):1-15.
  • 9Romano A H. Facilitated diffusion of 6-deoxy-D-glucose in Bakers′ yeast:evidence against phosphorylation-associated transport of glucose[J].{H}Journal of Bacteriology,1982,(03):1295-1297.
  • 10Hauer R,Hofer M. Evidence for interactions between the energy-dependent transport of sugars and the membrane potential in the yeast Rhodotorula gracilis (Rhodosporidium toruloides)[J].{H}Journal of Membrane Biology,1978,(04):335-349.

二级参考文献15

  • 1Tyson K S.Biodiesel research progress 1992-1997.NREL Technical Report, NREL/TP-580-24443,1998.
  • 2Gerpen J V. Business management for biodiesel producers. NREL Technical Report, NREL/SR-510-36342,2004.
  • 3Ratledge C, Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol,2002,51:1 ~ 51.
  • 4Ratledge C. Microorganisms for lipids. Acta Biotechnol, 1991,11:429 ~ 438.
  • 5Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng, 1999,87:1~14.
  • 6Gill C O, Hall M J, Ratledge C. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl Environ Microbiol, 1977,33: 231 ~ 239.
  • 7Ratledge C. Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans, 2002,30:1047 ~ 1050.
  • 8Fall R, Phelps P, Spindler D. Bioconversion of xylan to triglycerides by oil-rich yeasts. Appl Environ Microbiol, 1984,47:1130 ~ 1134.
  • 9Tyson K S, Bozell J, Wallace R. Biomass oil analysis: Research needs and recommendations. NREL Technical Report, NREL/TP510-34796,2004.
  • 10Ratledge C. Biochemistry, stoichiometry, substrates and economics.In: Moreton R S. Single Cell Oil. New York: Wiley, 1988.33 ~ 70.

共引文献85

同被引文献26

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部