期刊文献+

应用径向基神经网络预测矿产品价格 被引量:1

Price prediction of mineral products based on RBF neural network
下载PDF
导出
摘要 矿产品价格是矿业项目投资经济评价的重要参数。矿产品价格的合理确定是一个十分复杂的问题,也是涉及矿业项目投资经济评价可靠性、可行性的关键。本文首先讨论了矿产品价格的定价原理,指出其具有较强的不确定性和时序性,在此基础上,建立了基于径向基神经网络(RBF)的矿产品价格非线性预测模型,由3层前向神经网络组成,并以高斯函数作为基函数,该模型具有结构自适应、易于收敛和外推能力强等优点。应用建立的预测模型时某金属的中长期价格进行仿真,结果表明具有较好的可靠性和实用性。 The price of mineral products is a important parameter in the economic evaluation of mining project' s investment.It is very troublesome to determine adequately the price of mineral products,and it is the kev to evaluate the reliability and feasibility of mining project's investment economically.At first,the principle to fix mineral products price is discussed and draw the conclusion that it has obvious uncertainty and time-series.Then,the nonlinear model to predict mineral products price is set up based on RBF neural network,which is composed of 3 forward neural lavers and use Gauss function as its basic function.The model has the merits of self-adaption in structure.ease in convergence and extrapolating.The appling of the model to simulate a metal medium and long term price indicates that it has good reliability and practicability.
作者 郭立
机构地区 中国铝业公司
出处 《中国矿山工程》 2014年第1期65-67,共3页 China Mine Engineering
关键词 矿产品 价格预测 非线性 神经网络 mineral products price prediction nonlinear neural network
  • 相关文献

参考文献7

二级参考文献33

  • 1陈章潮,熊岗.应用灰色系统原理进行长期电力需求预测[J].系统工程,1994,12(2):67-71. 被引量:13
  • 2周雁.中国民航货运量的时间序列模型[J].成都理工大学学报(自然科学版),2005,32(4):433-437. 被引量:11
  • 3叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 4Chen S, Wang X X, Brown D J. Sparse incremental regression modeling using correlation criterion with boosting search. IEEE Signal Processing Letters, 2005, 12(3): 198-201.
  • 5Chen S, Wolfgang A, Harris C J, Hanzo L. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems. IEEE Transactions on Neural Networks, 2008, 19(5): 737-745.
  • 6Conzalez J, Rojas I, Ortega J, Pomares H, Fernandez F J, Diaz A F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks, 2003, 14(6): 1478-1495.
  • 7Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
  • 8Bors A G, Pitas I. Median radial basis function neural network. IEEE Transactions on Neural Networks, 1996, 7(6): 1351-1364.
  • 9Yin H, Allinson N M. Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 2001, 12(2): 405-411.
  • 10Esposito A, Marinaro M, Oricchio D, Scarpetta S. Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm. Neural Networks, 2000, 13(6): 651-665.

共引文献130

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部