期刊文献+

多项式分布滞后模型在桥梁挠度预测中的应用 被引量:2

A PDL model used for prediction of bridge deflection
下载PDF
导出
摘要 介绍了PDL(多项式分布滞后)模型,并将其应用于某桥梁挠度预测,重点考虑了温度以及车流量对挠度的影响。借助EVIEWS软件对桥梁不同时期的挠度变形值进行预测,并与灰色GM(1,1)模型的预测结果进行对比分析。结果表明,PDL模型具有比灰色模型更高的预测精度,其预测结果更为可靠,对类似工程有一定的借鉴作用。 This paper introduces the PDL (Polynomial Distributed Lag) model and its application to the deflection prediction of a bridge, which focus on the effect of temperature and flow of cars. The bridge deflection deformation in different periods are predicted with the help of EVIEWS software and compared with results obtained by grey GM (1, 1) model . The results show that PDL model has higher prediction accuracy than grey GM (1, 1 ) model and the prediction result is more reliable, which is valuable to the similar engineering practice.
出处 《工程勘察》 2014年第2期82-85,共4页 Geotechnical Investigation & Surveying
关键词 桥梁挠度预测 PDL模型 灰色GM(1 1)模型 对比分析 bridge deflection prediction PDL model grey GM (1, l) model comparative analysis
  • 相关文献

参考文献8

二级参考文献24

  • 1王丰效.基于归一化的非等距灰色预测模型[J].安庆师范学院学报(自然科学版),2005,11(3):24-26. 被引量:7
  • 2陈淑燕,王炜,李文勇.实时交通数据的噪声识别和消噪方法[J].东南大学学报(自然科学版),2006,36(2):322-325. 被引量:20
  • 3白凤山.么焕民.李春玲.沈继红.数学建模[M].哈尔滨:哈尔滨工业大学出版社,2002.
  • 4ORIS H迪根库布.混凝土箱梁桥[M].北京:人民交通出版社,1981.
  • 5李宇峙,秦仁杰.工程质量监理[M].北京:人民交通出版社,2007.
  • 6高铁梅,王金明,梁云芳,等.计量经济分析方法与建模[M].2版.北京:清华大学出版社,2009.
  • 7潘世建.海沧大桥建设丛书[M].北京:人民交通出版社,2001.
  • 8Van Arem B,Kirby H R, Van Der Vlist M J M, et al. Recent advances and applications in the field of short-term traffic forecasting, [J] Int. J. Forecast., 1997,13 (1) : 1.
  • 9Smith BL, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting [J].Transportation Research Part C--Emerging Technologies, 2002,10 (4) : 303.
  • 10BidishaGhosh, Biswajit Basu, Margaret O' Mahony. Multivariate short-term traffic flow forecasting using time- series analysis [ J ]. Ieee Transactions on Intelligent Transportation Systems, 2009,10 ( 2 ) : 246.

共引文献45

同被引文献30

  • 1丁俊君,戴生泉.多项式分布滞后模型阶数的确定及其应用[J].统计与决策,2004,20(10):28-29. 被引量:9
  • 2Banerjee P, Singh V S, Chatttopadhyay K, et al. Artificial Neural Network Model as a Potential Alternative for Groundwater Salinity Forecasting ~ J ]. Journal of Hydrology, 2011,398 ( 3 ) : 212-220.
  • 3Adamowski J, Chan H F. A Wavelet Neural Network Conjunction Model for Groundwater Level Forecasting ~ J 1. Journal of Hydrology ,2011,407 ( 1 ) :28-40.
  • 4Daliakopoulos I N, Coulibaly P, Tsanis I K. Groundwater Level Forecasting Using Artificial Neural Networks~ J ]. Journal of Hydrology, 2005,309 ( 1 ) : 229-240.
  • 5Behzad M, Asghari K, Eazi M, et al. Generalization Performance of Support Vector Machines and Neural Networks in Runoff Modeling I J ] ~ Expert Systems with Applications, 2009,36 ( 4 ) : 7624-7629.
  • 6Zhu Y, Day R L. Regression Modeling of Streamf/ow, Baseflow, and Runoff Using Geographic Information Systems [ J ]. Journal of Environmental Management, 2009,90 ( 2 ) : 946-953.
  • 7Tyagi P, Edwards D R, Coyne M S. Use of Selected Chemical Markers in Combination with a Multiple Regression Model to Assess the Contribution of Domesticated Animal Sources of Fecal Pollution in the Environment ~ J 1. Chemosphere ,2007,69 (10) : 1617-1624.
  • 8Ng S, Stevanovic D. Factor-augmented Autoregressive Distributed Lag Models I D 1 - New York, USA .. Columbia University, 2012.
  • 9Galvao J R, Antonio F, Montes-Rojas G, et al. Quantile Autoregressive Distributed Lag Model with an Application to House Price Returns[ Jl. Oxford Bulletin of Economics and Statistics,2013,75 (2) :307-321.
  • 10Pankratz A. Forecasting with Dynamic Regression ModelsEM]. New York,USA:John Wiley & Sons Ltd. ,2012.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部