期刊文献+

车用发动机压缩空气制动循环特性 被引量:3

Performances of vehicle engine air compression braking
下载PDF
导出
摘要 基于压缩空气储能回收车辆制动能量的思想,提出以单向阀作为能量回收阀的发动机压缩空气制动能量回收方法.通过热力学分析,建立发动机压缩空气制动模型,通过台架试验得到初步验证.通过对模型进行稳定工况仿真,得到发动机压缩空气制动在不同转速和不同气罐背压下的特性.通过车辆模拟制动仿真得到特定制动工况下气罐内气体累积过程及能量回收效率.结果表明:缸内最大压力与气罐背压之差是影响制动性能的内在关键因素,增大压缩比可以增加发动机制动转矩,提高能量回收效率;在稳定工况条件下,发动机压缩空气制动循环的最大制动转矩可达驱动时最大转矩的54%,最大能量回收率可达8.5%;在所选的模拟制动工况下,采用发动机压缩空气制动能够使车辆获得较稳定的减速度,整车能量回收率达到10.2%. A novel engine regenerative braking method was presented which adopts a check valve for energy recovery based on the idea of braking energy recovery through compressed air. A single cylinder gasoline engine prototype was modeled and validated with preliminary test by using thermodynamics and gas dy- namics theory. Engine braking performances at steady state simulations were discussed, including engine braking torque and energy recovery efficiency with different engine speed and tank pressure. Transient simulations of vehicle deceleration were conducted to analyze tank pressure accumulating and energy recov- ery efficiency. Results show that the difference between maximum pressure in engine cylinder and tank pressure is the crucial factor influencing braking characteristics. The engine braking torque and efficiency can both increase with higher compression ratio. At steady state simulation cases, the braking torque rea- ches 54 % of the maximum driven torque of engine conventional mode and the maximum energy recovery ef- ficiency reaches 8.5 %. Vehicle braking simulation at certain conditions shows an effective deceleration and efficiency of 10.2%.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第1期56-62,共7页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2011CB707205) 国家自然科学基金资助项目(50976104)
关键词 发动机制动 压缩空气 能量回收 engine braking air compression energy recovery
  • 相关文献

参考文献13

  • 1EHSANI M, GAO Y, EMADI A. Modern electric, hy- brid electric, and fuel cell vehicles: fundamentals, theo- ry, and design [M]. 2nd ed. Boca Raton.. CRC, 2010.
  • 2翟昕,俞小莉,刘忠民.压缩空气-燃油混合动力的研究[J].浙江大学学报(工学版),2006,40(4):610-614. 被引量:13
  • 3胡军强,俞小莉,陈平录,聂相虹.气动-柴油混合动力空气管理策略研究[J].内燃机工程,2009,30(4):7-11. 被引量:7
  • 4CHEN Pingqu, YU Xiao-li, NIE Xiang-hong, et al. Control strategy for parallel hybrid air fuel vehicle [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(2): 348-353.
  • 5SCHECHTER M M. New cycles for automobile engines [C]// International Congress and Exposition. Detrot SAE, 1999-01-0623.
  • 6SCHECHTER M M. Regenerative compression braking: a low cost alternative to electric hybrids [C]// SAE 2000 World Congress. Detroit: SAE, 2000-01-1025.
  • 7TAI C, TSAO T C, LEVIN M B, et al. Using carnless val- retrain for air hybrid optimization [C]// SAE 2003 World Congress and Exhibition. Detroit: SAE, 2003-01-0038.
  • 8TRAJKOVIC S, TUNESTAL P, JOHANSSON B, et al. Introductory study of variable valve actuation for pneumatic hybridization [C]//SAE 2007 World Congress and Exhibition. Detroit: SAE, 2007 01-0288.
  • 9TRAJKOVIC S, TUNESTAL P, JOHANSSON B. Investigation of dif{erent valve geometries and valve timing strategies and their effect on regenerative efficiency for a pneumatic hybrid with variable valve actuation [C]//2008 SAE International Powertrains, Fuels and Lubricants Con- gress. Shanghai: SAE, 2008-01-1715.
  • 10LI Dao-fei, WANG Lei, YE Jin, et al. Valve strategy design for braking energy regeneration through engine air compression [C]//The 2012 International Confer- ence on Advanced Vehicle Technologies and Integration. Changchun: [s. n. ], 2012:16 - 19.

二级参考文献9

共引文献18

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部