期刊文献+

Contourlet变换系数加权的医学图像融合 被引量:30

Medical image fusion based on weighted Contourlet transformation coefficients
原文传递
导出
摘要 目的由于获取医学图像的原理和设备不同,不同模式所成图像的质量、空间与时间特性都有较大差别,并且不同模式成像提供了不互相覆盖的互补信息,临床上通常需要对几幅图像进行综合分析来获取信息。方法为了提高对多源图像融合信息的理解能力,结合Contourlet变换在多尺度和多方向分析方法的优势,将Contourlet变换应用于医学图像融合中。首先将源图像经过Contourlet变换分解获得不同尺度多个方向下的分解系数。其次通过对Contourlet变换后的系数进行分析来确定融合规则。融合规则主要体现在Contourlet变换后图像中的低频子带系数与高频子带系数的优化处理中。针对低频子带主要反映图像细节的特点,对低频子带系数采用区域方差加权融合规则;针对高频子带系数包含图像中有用边缘细节信息的特点,对高频子带系数采用基于主图像的条件加权融合规则。最后经过Contourlet变换重构获得最终融合图像。结果分别进行了基于Contourlet变换的不同融合规则实验对比分析和不同融合方法实验对比分析。通过主观视觉效果及客观评价指标进行评价,并与传统融合算法进行比较,该算法能够克服融合图像在边缘及轮廓部分变得相对模糊的问题,并能有效地融合多源医学图像信息。结论提出了一种基于Contourlet变换的区域方差加权和条件加权融合算法。通过对CT与MRI脑部医学图像的仿真实验表明,该算法可以增加多模态医学图像互补信息,并能较好地提高医学图像融合的清晰度。 Objective Because of a different imaging mechanism, different modality medical images provide a variety of characteristics about image quality, space, and non-overlay complementary information. In clinical use, we need to analyze the result of muhimodal medical images. Method In order to use medical images effectively and reasonably, a medical im- age fusion algorithm is proposed, combining the advantages of muhi-scale and multiple directions in the Contourlet transfor- mation. First, multi-scale and multiple directions decomposition coefficients are obtained through Contourlet transformation. Second, fusion rules are proposed by analyzing the characteristics of Contourlet transformation coefficients. An optimized image fusion rule is proposed in low frequency sub-band coefficients and high frequency sub-band coefficients. For low fre- quency sub-band coefficients, the weighted regional variance fusion rule is adopted in view of the image detail characteris-tics. The high frequency sub-band coefficients are fused by a condition-weighted rule of the main image in view of the edge detail characteristics. Finally, the final fusion image is acquired through the Contourlet inverse transformation. Result Different fusion rules based on Contourlet transformation and different fusion methods are analyzed. The fusion re- suits are analyzed and compared with the measurement of human visual system and objective evaluation. Compare the new fusion method with other classical fusion algorithm to confirm the advantages of the new method. The experimental results show that the proposed algorithm is effective in retaining the original images' information and reserving the edge features successfully. Conclusion A medical image weighting fusion algorithm is proposed based on Contourlet transformation. Med- ical images, including CT and MRI, are used for the experiments. The results show that the complementary information of medical image can be highlighted and the image definition has improved significantly
作者 张鑫 陈伟斌
出处 《中国图象图形学报》 CSCD 北大核心 2014年第1期133-140,共8页 Journal of Image and Graphics
基金 国家自然科学基金青年基金项目(11005081) 浙江省教育厅科技项目(Y201223187)
关键词 医学图像 图像融合 CONTOURLET变换 加权融合算法 medical image image fusion Contourlet transformation weighted fusion algorithm
  • 相关文献

参考文献16

  • 1陈露斯,胡学锋,石锦平,郑镇和.MRI/CT融合与增强CT对鼻咽癌靶区勾画的比较[J].实用癌症杂志,2010,25(2):172-174. 被引量:12
  • 2张洋,张宁,王颖.PET-CT图像融合对复发鼻咽癌靶区勾画的影响[J].中国医学工程,2011,19(12):52-53. 被引量:3
  • 3李凯,曾庆劲,郑荣琴,苏中振,贺需旗.CT/MR图像融合评价肝癌消融的安全边界[J].中国医学影像技术,2012,28(12):2189-2192. 被引量:10
  • 4Freiman M,Werman M,Joskowicz L. A curvelet-based patientspecific prior for accurate multi-modal brain image rigid registration[J].{H}Medical Image Analysis,2011,(1):125-132.
  • 5Bhatnagar G,Wu Q M,Zheng L. Human visual system inspired multi-modal medical image fusion framework[J].{H}Expert systems with application,2013,(5):1708-1720.
  • 6Bhatnagar G,Wu Q M. An image fusion framework based on human visual system in framelet domain[J].International Journal of Wavelets Multiresolution and Information Processing,2012,(1):1250002-1250011.
  • 7Kavitha C T,Chellamuthu C,Rajesh R. Medical image fusion using combined discrete wavelet and ripplet transforms[J].Procedia Engineering,2012.813-820.
  • 8Daneshvar S,Ghassemian H. MRI and PET image fusion by combining IHS and retina-inspired models[J].Information Fusion,2010,(2):114-123.
  • 9Bhatnagar G,Raman B. A new image fusion technique based on directive contrast[J].Electronic Letter on Computer Vision and Image Analysis,2009,(2):18-38.
  • 10徐苏.基于Contourlet的医学图像融合技术探讨[J].中国医学影像技术,2011,27(11):2326-2330. 被引量:4

二级参考文献65

  • 1苗启广,王宝树.基于小波变换与局部能量的多聚焦图像融合[J].计算机科学,2005,32(2):229-232. 被引量:20
  • 2李伟,朱学峰.医学图像融合技术及其应用[J].中国医学影像技术,2005,21(7):1126-1129. 被引量:25
  • 3杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452. 被引量:25
  • 4Chung NN, Ting LL, Hsu WC, et al. Impact ofmagnetic resonance imaging versus CT on nasopharyngeal carcinoma: primary tumor target delineation for radiotherapy[J].Head Neck,2004,26(3) :241.
  • 5Glastonbury CM. Nasopharyngeal carcinoma:the role of magnetic resonance imaging in diagnosis, staging, treatment, and follow-up[J]. Top Magn Reson Imaging,2007, 18 (4) : 225.
  • 6Wehens C, Menten J, Femn M, et al. Interobserver variation in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging[J]. Radiother Oncol,2001,60 (1):49.
  • 7Som PM. Sinonasal tumors and inflammatory tissues : differentiation with MRI[J]. Radiology, 1988,167 (3) :803.
  • 8Ying Luo, Yong Xue. Remote sensing information processing grid node with loose-computing parallel structure[J]. LNCS, 2006(3991) :876-879.
  • 9Rhonda D. Phillips. Hybrid image classication and parameter selection using a shared memory parallel algorithm[J]. Com- puters ~ Geoseiences, 2007 (33) : 875-897.
  • 10Plaza, A. J. , Chang, C. L. High Performance Computing in Remote Sensing[ M]. Chapman & Hall/CRC, London, 2008 : 9 - 10.

共引文献140

同被引文献234

引证文献30

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部