期刊文献+

贝叶斯模型在土壤转换函数中的应用与适应性评价 被引量:3

Application and Adaptability Evaluation of Bayesian Model in Soil Transfer Functions
下载PDF
导出
摘要 为了研究大型灌区节水改造后的区域农田生态环境效应中分布式水文模型空间参数的确定问题,通过内蒙古河套灌区解放闸灌域22个土壤水盐监测点110个土壤样本的采样与分析,利用贝叶斯神经网络(BNN)模型建立了河套灌区区域分层土壤特征参数与土壤水分特征曲线模型参数、特征含水率之间的土壤转换函数模型,并与已有的BP神经网络模型进行适应性比较及模型验证。结果表明,BP模型土壤转换函数的训练模拟精度优于BNN,但是在模拟预测方面,BNN模型普遍好于BP模型,而且模型输入因子数量对BP模型的精度影响较大,而BNN模型对于不同输入因子表现出很好的稳健性,BNN模型比传统的人工神经网络模型具有更好的适应性和预测效果,体现了土壤特征参数的空间随机性和结构性特征,而且预测的土壤水分特征曲线与实测和VG拟合结果更为接近,是一种具有广阔应用前景的区域土壤转换函数推求方法。 In order to s ecological influences of tudy the spatial parameters of the distributive hydrological models among the regional farmland under the condition of water-saving practices in large scale irrigation district, the Bayesian neural networks and back-propagation artificial neural network models were applied to establish regional pedotransfer function models. Based on the relationship of measured soil characteristic contents, soil particle percentage, organic matter and bulk density, the adaptability of these two kinds of ANN models were evaluated through simulated and predicted values statistically, accompanied with the SWRC figures. Results indicated that the BP and BNN were both feasible PTFs methods. The training simulated accuracy of traditional BP model was better than that of BNN. However, the predicted accuracy of BNN model generally was better than the BP model. Furthermore, the predictive accuracy of BP model was significantly influenced by the number of input factor groups. But there were little influences on different input factors of BNN model. So, the BNN showed good robustness for the simple inputs. Besides, the predicted SWRC was better fitted with measured and VG fitted curve than that of ANN. Thus, the BNN model was better than the traditional artificial neural network model. It had better adaptability in the pedotransfer function establishment when only soil particle distribution was used. All showing that the BNN method was a practical method for regional pedotransfer function establishment.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第2期149-155,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(51069006) 内蒙古自治区高等学校青年科技英才支持计划资助项目(NJYT-12-A05)
关键词 贝叶斯神经网络 河套灌区 土壤转换函数 适应性 Bayesian neural network Hetao irrigation district Pedotransfer functions Adaptability
  • 相关文献

参考文献15

二级参考文献87

共引文献209

同被引文献26

  • 1吴冰.生存分析及其应用:以创业研究为例[J].上海交通大学学报(哲学社会科学版),2006,14(3):63-65. 被引量:9
  • 2徐英,骆福添.生存分析中几种模型的研究概况[J].中国卫生统计,2006,23(4):364-366. 被引量:5
  • 3巴彦淖尔市统计局.巴彦淖尔市统计年鉴(2000年-2010年)[M].巴彦淖尔市:巴彦淖尔市统计局,2000年-2010年.
  • 4武银星,秦景和.内蒙古河套灌区供排水运营管理统计资料汇编(1960年-2008年)[G].巴彦淖尔:内蒙古河套灌区,2009.
  • 5门登霍尔w,辛塞奇T.统计学[M].5版.北京:机械工业出版社,2011.
  • 6何晓群.多元统计分析[M].3版.北京:人民大学出版社,2012:1-87.
  • 7方积乾.生存分析的概念与方法学[J].自然杂志,1988,11(11):826-831.
  • 8Oakes D. Biometrika centenary: survival analysis[ J]. Biometrika, 2001, 88( 1 ): 99- 142.
  • 9Tiwari G, Bang diwala S, Saraswat A, et al. Survival analysis: pedestrian risk exposure at signalized intersections [ J ]. Transportation Research Part F: Traffic Psychology and Behaviour, 2007, 10 (2) : 77 - 89.
  • 10张焱,韩军青,郭刚.晋西黄土高原地区近47年降水量的统计分析[J].干旱区资源与环境,2008,22(1):89-91. 被引量:21

引证文献3

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部