期刊文献+

二维弹性快速多极边界元法及截断误差

Fast multipole boundary element method for 2D elasticity problem and truncation error
下载PDF
导出
摘要 针对二维弹性问题的快速多极边界元法,给出复变函数形式的位移基本解的展开平移格式和主要的计算步骤.通过对计算量级的分析,得出改进"相互作用列表"以后的算法加快计算的原理,说明"相互作用列表"的改进能提高算法的计算效率.同时结合近远场划分准则具体表达了源点的近场和远场距离的点.对二维弹性力学问题快速多极边界元法的多极展开截断误差进行了分析,给出如何选取截断项数的表达式,从而说明截断误差与截断项数有关,可由截断项数控制. In terms of the Fast Multipole Boundary Element Method(FM-BEM), expansions and translations format and the main computational steps of the fundamental solution were presented for 2D elasticity problem. Through the analysis of operations, it can obtain a principle of an algorithm that the interaction list was modified, and it demonstrates that the interaction list is able to speed up computational efficiency. At the same time, combined with division criterion for near-far field, it shows the points of near field and far field distance of the source. Truncation error from the FM-BEM multiple expansion was analyzed for 2D elasticity problem. And a formula of number of expansion terms indicates the relation of truncation error and the number of the expansion terms.
机构地区 燕山大学理学院
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2014年第1期128-131,共4页 Journal of Liaoning Technical University (Natural Science)
基金 河北省自然科学基金资助项目(A2011203020) 河北省高等学校科学技术研究重点基金资助项目(ZD2010116)
关键词 弹性问题 快速多极 基本解 计算量级 计算效率 近远场 多极展开 截断误差 2D elasticity fast multipole fundamental solution operations computational efficiency near-farfield multipole expansion truncation error
  • 相关文献

参考文献2

二级参考文献18

  • 1余德浩.无界区域非重叠区域分解算法的离散化及其收敛性[J].计算数学,1996,18(3):328-336. 被引量:53
  • 2Martin P A. Exact solution of a simple hypersingular integral equation [J]. Integral Equations Appl., 1992(4): 197-204.
  • 3Chakrabarti A, Mandal B N. Derivation of the solution of a simple hypersingular integral equation[J]. Int. J. Math. Educ. Sci.Technol., 1998(29):47-53.
  • 4Boykov I V, Romaaova E G. Reports of higher educational institutions: the collocation method of solution of hypcrsingular integral equations[R]. The Penza State University: Natural Scienoes, 2006, 5 (in Russian).
  • 5Martin B N, Beta G H, Approximate solution for a class of hypersingular integral equations[J]. Applied Mathematics Letters,2006(29): 1286- 1290.
  • 6Chakrabarti A, Vanden Berghe G. Approximate solution of singular integralequations[J]. Appl.Math.Lett.,2004( 17):553 -559.
  • 7MA Yifei. A study of numerical solution for the model of optimal control theory[J]. Journal of Liaoning Technical University, 2001: 828-832.
  • 8Dzhishkariani A. Approximate solution of one class of singular integral equations by means of the projecdtive-uteratuve methods[J]. Meth.Differ.Equations of Math.Phys.,2005(34): 1-76.
  • 9Mandal B N, Gayen R, Chowdhruy. Water wave scattering by two symmetric circular arc shaped thin plates[J]. J. Engrg. Math.,2002(44): 297-303.
  • 10Chan Y S, Fannjiang AC, Paulino G H. Integral equations with hypersingular kernels-theory and applications to fractrue mechanics[J]. Intemat. J.Engrg.Sci., 2003(41): 683-720.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部