期刊文献+

应用于雷达方位超分辨的改进Richardson-Lucy算法 被引量:1

An Improved Richardson-Lucy Algorithm Used in Radar Azimuth Super-resolution
下载PDF
导出
摘要 方位超分辨是国内外雷达界持续探索的一项技术难题。为解决高斯噪声情况下天线低通效应造成的方位低分辨力问题,利用基于泊松噪声情况下Richardson-Lucy(RL)算法对其进行研究。针对RL算法中高斯噪声被放大出现虚假目标和RL算法收敛速度慢的缺点,提出了一种改进RL算法。该算法首先使用低通滤波去除高频段的噪声,然后利用加速RL算法进行方位超分辨。仿真结果表明:与原RL算法相比,改进RL算法能降低高斯噪声的影响,消除虚假目标;在信噪比低至0 dB时,相对于半功率波束宽度,改进RL算法的最大分辩倍数为1.8倍,与维纳逆滤波算法相比具有较强的噪声适应能力,可以应用于雷达方位超分辨。 Azimuth super-resolution remains a technical problem needed to be explored in radar domain both at home and abroad. In order to solve the low resolution problem caused by antenna’s low-pass effect under the condition of Gaussian noise, Richardson-Lucy ( RL) algorithm is used in research based on the Poisson noise. For the drawback of false target because of amplified effect of Gaussian noise and slow con-vergence rate, an improved RL algorithm is proposed. Firstly, the improved algorithm uses the low-pass filter to remove the noise in high frequency band, then its azimuth super resolution is solved by the acceler-ated RL algorithm. Simulation results show that, compared with the original RL algorithm, the improved RL algorithm can reduce the Gaussian noise, eliminate false targets, with regards to the half-power beam-width, its maximum resolution ratio can be reach 1. 8 times when the signal-to-noise ratio(SNR) is low to 0 dB, which shows the improved RL algorithm has strong noise adaptation capability compared with Wie-ner inverse filtering algorithm and can be used in radar azimuth super-resolution.
出处 《电讯技术》 北大核心 2014年第1期40-45,共6页 Telecommunication Engineering
关键词 雷达探测 方位超分辨 RL算法 迭代算法 反卷积 radar detection azimuth super resolution RL algorithm iterative algorithm deconvolution
  • 相关文献

参考文献4

二级参考文献15

共引文献34

同被引文献16

  • 1Stimson W G. Introduction to airborne radar[M] (2nd ed. ). New Jersey: Scitech Publishing, Inc., 1998:36-45.
  • 2Suzuki, T. Radar beamwidth reduction techniques [ J ]. Aerospace and Electronic Systems Magazine, IEEE, 1998, 13(5) : 43-48.
  • 3Li W, Yang J, Huang Y. Keystone transform-based space-variant range migration correction for airborne for- ward-looking scanning radar [ J ]. Electronics Letters, 2012,48 ( 2 ) : 121-122.
  • 4Sutor T, Witte F, Moreira A. A new Sector Imaging Ra- dar for Enhanced Vision-SIREV [ C ] //SPIE Conference on Enhanced and Synthetic Vision. Orlando, Florida: SPIE, 1999:39-47.
  • 5Shin H S, Lim J T. Omega-k algorithm for airborne for- ward-looking bistatic spotlight SAR imaging [ J ]. Geosci- ence and Remote Sensing Letters, IEEE, 2009,6 ( 2 ) : 312-316.
  • 6Uttam S, Goodman N A. Superresolution of Coherent Sources in Real-Beam Data [ J ]. Aerospace and Electronic Systems, IEEE Transactions on, 2010, 46(3) :1557-1566.
  • 7Gambardella A, Migliaccio M. On the superresolution of microwave scanning radiometer measurements [J]. Geo- science and Remote Sensing Letters, IEEE, 2008, 5 (4) :796-800.
  • 8Senmoto S, Childers D G. Signal resolution via digital in- verse filtering [ J ]. Aerospace and Electronic Systems, IEEE Transactions on, 1972 (5) :633-640.
  • 9Richards M A. Iterative noncoherent angular superresolu- tion[ radar] [ C ] // Radar Conference, 1988. , Proceed- ings of the 1988 IEEE National. IEEE, 1988:100-105.
  • 10Sadjadi F. Radar beam sharpening using an optimum FIR filter[ J ]. Circuits, Systems and Signal Processing, 2000, 19(2) : 121-129.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部