期刊文献+

一种新的多址信道有效阶数估计算法 被引量:1

A Novel Algorithm for Multi-access Channel Effective Order Estimation
下载PDF
导出
摘要 针对多用户正交频分复用/空分多址(OFDM/SDMA)系统上行链路多址信道,基于噪声信道提出了一种新的信道有效阶数和信道冲激响应联合估计算法。该算法以最大似然为目标函数,构建了基于差分进化并行搜索信道有效阶数并进行信道冲激响应估计的联合框架。算法引入赤池信息量准则作为搜索阶数最优的评判函数,以提高信道有效阶数和信道冲激响应的估计精度。仿真验证了所提算法的有效性和可靠性,结果表明引入赤池信息量准则(AIC)在降低有效信道阶数估计误差的同时提高了时域最大似然信道估计器的性能。特别地,在误码率为10-5时,所提算法能够获得约1.5 dB的性能增益。 In order to improve the precision of channel parameter estimation, a novel channel effective order estimation scheme is proposed for multi-user Orthogonal Frequency Division Multiplexing/Space Division Multiple Access(OFDM/SDMA) uplink system in this paper. Exploiting Akaike's Information Criterion (AIC) as the evaluation function to search the optimal order, this scheme performs a joint channel ef- fective order and channel impulse response estimation in a parallel way based on the differential algorithm. With the introduction of AIC, it can reduce the estimation errors of multi-access channel effective order. Simulation results verify the validity and reliability of the proposed scheme. It is also shown that the proposed scheme achieves a better mean square error performance than the fixed channel order scheme and improves the performance of time-domain Maximum Likelihood channel estimator.
出处 《电讯技术》 北大核心 2014年第1期84-88,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61271421) 国家自然科学基金青年科学基金资助项目(61301150) 高等学校博士学科点专项科研基金(新教师类)项目(20134101120001)~~
关键词 多用户OFDM SDMA 信道有效阶数 赤池信息量准则 信道估计 差分进化 multi-user OFDM/SDMA channel effective order AIC channel estimation differential evolution
  • 相关文献

参考文献10

  • 1Li Y, Seshadri N, Ariyavisitakul S. Channel estimation for OFDM systems with transmitter diversity in mobile wire- less channels [ J ]. IEEE Journal on Selected Areas in Communications, 1999,17 ( 3 ) :461-471.
  • 2Xie Y Z, Georghiades C N. Two EM-type channel estima- tion algorithm for OFDM with transmitter diversity [ J ]. IEEE Transactions on Wireless Communications,2003,51 (1) :106-115.
  • 3Zhang J K, Hanzo L, Mu X M. Joint decision-directed channel and noise-variance estimation for MIMO OFDM/ SDMA systems based on expectation-conditional maximi- zation[ J]. IEEE Transactions on Vehicular Technology, 2011,60(5 ) :2139-2151.
  • 4Liavas A P, Regalia P A, Delmas J P. On the robustness of the linear prediction method for blind channel identifica- tion with respect to effective channel undermodeling~/ overmodeling[ J]. IEEE Transactions on Signal Process- ing,2000,48 ( 5 ) : 1477-1481.
  • 5Wang Z, Mathew G,Xin Y, et al. A robust maximum like- lihood channel estimator for OFDM systems [ C ]//Pro- ceedings of 2007 Wireless Communications and Networ- king Conference. Hongkong : IEEE, 2007 : 169-174.
  • 6Jia M, Wang Z Y, Gu X M. Joint time domain channel and channel length estimation for OFDM system [ C ] //Pro- ceedings of 2007 International Conference on Communica- tions, Computers and Signal Processing. Victoria, Cana- da : IEEE,2007:605-608.
  • 7Hirotugu A. A new look at the statistical model identifica- tion[ J]. IEEE Transactions on Automatic Control, 1974, 19(6) :716-723.
  • 8Larrsson E G, Liu G Q, Li J, et al. Joint symbol timing and channel estimation for OFDM based WLANs [ J ]. IEEECommunications Letters ,2001,5 ( 8 ) :325 -327.
  • 9Tomasoni A, Gatti D, Bellini S, et al. Efficient OFDM channel estimation via an information criterion [ J ]. IEEE Transactions on Wireless Communications, 2013,12 (3) : 1352-1362.
  • 10Zhang J K, Chert S, Mu X M, et al. Turbo muhi-user detection for OFDM/SDMA systems relying on differenti- al evolution aided iterative channel estimation [ J ]. IEEE Transactions on Wireless Communications, 2012, 60 (6) : 1621-1632.

同被引文献9

  • 1OZDEMIR M K, ARSLAN H. Channel estimation for wireless OFDM systems[J]. IEEE Communication Surveys and Tutorials, 2007,9 (2) 18-48.
  • 2HOUDA K, MALEK B, FAROUK O M. Low rank MMSE channel estimation in MIMO-OFDM systems.- Innova- tive computing technology[C]//Second International Conference on INTECH. Casablanca.-IEEE Press, 2012: 279- 284.
  • 3TOMASK)NI A, GATTI D, BELLINI S, et al. Efficient OFDM channel estimation via an information criterion[J]. Transactions on Wireless Communications, 2013,12(3) : 1352-1362.
  • 4TU Chaocheng, BENOIT C. Subspace-based blind channel estimation for MIMO-OFDM systems with reduced time averaging[J]. Transactions on Vehicular Technology, 2010,59 (3) : 1539-1544.
  • 5RAYRA D, LOURENCO M,WILSON K, et al. Implementation aspects of adaptive window moving average filter applied to PLLs-Comparative study[C] // Power Electronics Conference (COBEP). Brazilian.. IEEE Press, 2013= 730-736.
  • 6PETER S. Low-rank adaptive filters[J]. Transactions on Signal Processing, 1996,44(12) :2932-2947.
  • 7STROBACH P. Bi-iteration SVD subspaee tracking algorithms[J]. Transactions on Signal Processing, 1997,45 (5) : 1222-1240.
  • 8石磊,郭宝龙,李小平,吕良.一种低复杂度LMMSE信道估计算法[J].西安电子科技大学学报,2012,39(2):24-28. 被引量:21
  • 9郭士旭,郭军利,蒋建中,刘世刚.一种改进的基于秩检测的信道有效阶数估计算法[J].信息工程大学学报,2012,13(5):552-557. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部