期刊文献+

面向微博短文本的细粒度情感特征抽取方法 被引量:29

A Microblog Short Text Oriented Multi-class Feature Extraction Method of Fine-Grained Sentiment Analysis
下载PDF
导出
摘要 结合TF-IDF方法与方差统计方法,提出一种实现多分类特征抽取的计算方法。采用先极性判断,后细粒度情感判断的处理方法,构建细粒度情感分析与判断流程,并将其应用于微博短文本的细粒度情感判断。通过NLP&CC2013评测所提供的训练语料对该方法有效性进行验证,结果表明该方法具有较好的抽取效果。 Combined with TF-IDF method and variance statistical forumla, a new method for the extraction of multi-class feature is presented. This microblog short text oriented extraction method is used to determine the fine-grained sentiment type. Then the processes of fine-grained sentiment analysis is bulit. This method is used to praticipate the NLP&CC2013 evaluation, and the effectiveness of this method is proved by the good ranking of the subimitted data.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期48-54,共7页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(61070083) 国家科技支持计划子课题(2011BAK08B03-01)资助
关键词 自然语言处理 文本情感分析 细粒度情感 多分类特征抽取 natural language processing text sentiment analysis fine-grained sentiment analysis multi-class feature extraction
  • 相关文献

参考文献8

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:543
  • 2徐琳宏,林鸿飞,潘宇,任惠,陈建美.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. 被引量:384
  • 3Ekman P. Facial expression and emotion. American Psychologist, 1993, 48(4): 384-392.
  • 4Yang Y, Pedersen J O. A comparative study on feature selection in text categorization. ICML, 1997, 97: 412-420.
  • 5熊忠阳,张鹏招,张玉芳.基于χ~2统计的文本分类特征选择方法的研究[J].计算机应用,2008,28(2):513-514. 被引量:44
  • 6Zagibalov T, Carroll J. Automatic seed word selection for unsupervised sentiment classification of Chinese text // Proceedings of the 22nd International Con- ference on Computational Linguistics-Volume 1. Manchester, 2008:1073-1080.
  • 7Barbosa L, Feng J. Robust sentiment detection on twitter from biased and noisy data // Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010). Beijing, 2010:36-44.
  • 8Li Binyang, Zhou Lanjun, Feng Shi, et al. A unified graph model for sentence-based opinion retrieval // Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, 2010:1367-1375.

二级参考文献23

  • 1陈治纲,何丕廉,孙越恒,郑小慎.基于向量空间模型的文本分类系统的研究与实现[J].中文信息学报,2005,19(1):36-41. 被引量:43
  • 2徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:56
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 4林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 5SCHUTZE H,HULL D A,PEDERSEN J O.A comparison of classifiers and document representations for the routing problem[C]// Proceedings of the 18th ACM International Conference on Research and Development in Information Retrieval.[S.l.]:ACM Press,1995:229-237.
  • 6YANG YI-MING.Expert network:Effective and efficient learning from human decisions in text categorization and retrieval[C]// Proceedings of the 17th International ACM SIGIR Conference on Research and Development in Information Retrieval.Dublin:Springer,1994:12-22.
  • 7杨允信.文本文件自动分类之研究[C]// 台湾地区第六届计算语言学研讨会论文集.台湾:[s.n.],1993.
  • 8Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183.
  • 9Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392.
  • 10Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576.

共引文献932

同被引文献262

引证文献29

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部