期刊文献+

日语时间表达式识别与日汉翻译研究 被引量:1

Japanese Time Expression Recognition and Translation
下载PDF
导出
摘要 基于自定义知识库,提出一种知识库强化规则集以及与统计模型相结合的日语时间表达式识别方法,旨在不断提高时间表达式的识别精准度。按照Timex2标准对时间表现的细化分类,结合日语时间词的特点,渐进地扩展重构日语时间表达式知识库,实现基于知识库获取的规则集的优化更新。同时,融合条件随机场CRF统计模型,提高日语时间表达式识别的泛化能力。通过考察基于短语的翻译模型翻译时间词的精度,提出统计机器翻译(SMT)结合规则翻译日语时间词的必要性。实验结果显示,日语时间表达式识别的开放测试F1值达到0.8987,基于《日汉时间词平行字典》与规则的翻译精度和召回率都略高于基于统计机器翻译模型。 Based on the defined knowledge base, the authors presented a Japanese time expression recognition method through combining rules set strengthened by knowledge base with statistical model. In order to increase recognition accuracy, according to the Timex2 standards' granular classification on time, the knowledge base was progressively expanded and reconstructed given the Japanese time characteristic to achieve rules set optimization and update. Simultaneously, CRF model was fused to enhance the generalization ability of Japanese time expression recognition. The authors studied the time translation accuracy of phrase-based translation model and proved the necessity of combing rules with statistical machine translation (SMT). Experiment results show that the F1 value of Japanese time expression recognition reaches 0.8987 on open test, and both the precision and recall by the method based on rules and parallel dictionary of Japanese to Chinese time expression are a bit higher than those by the method based on statistical translation model.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期180-186,共7页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(61370130) 科学技术部国际科技合作计划(K11F100010) 中央高校基本科研业务费专项资金(2010JBZ2007) 中国科学院计算技术研究所智能信息处理重点实验室开放课题(IIP2010-4) 北京交通大学人才基金(2011RC034)资助
关键词 知识库 规则 统计模型 统计机器翻译 时间词平行字典 knowledge base rule statistical model statistical machine translation time parallel dictionary
  • 相关文献

参考文献15

  • 1邬桐,周雅倩,黄萱菁,吴立德.自动构建时间基元规则库的中文时间表达式识别[J].中文信息学报,2010,24(4):3-10. 被引量:16
  • 2贺瑞芳,秦兵,刘挺,潘越群,李生.基于依存分析和错误驱动的中文时间表达式识别[J].中文信息学报,2007,21(5):36-40. 被引量:21
  • 3Maqur P, Dale R. A rule based approach to temporal expression tagging II Proceeding of the International Multi Conference on Computer Science and Information Technology. Wisla, Poland, 2007: 293- 303.
  • 4Wu Mingli, Li Wenjie, Lu Qin, et al. A Chinese temporal parser for extracting and normalizing tern - oral information II InternationalJoint Conference on Natural language Processing (IJCNlP).Jeju Island, 2005: 694-706.
  • 5Ahn D, Adafre S F, de Rijke M. Recognizing and interpreting temporal expressions in open domain texts. Digital Information Management, 2005, 3(1): 14-20.
  • 6Ahn D D, Adafre SF, de Rijke M. Towards task-based temporal extraction and recognition II Proceeding on Annotating, Extracting, and Reasoning about Time and Events. Schloss Dagstuhl, Germany, 2005: 193- 205.
  • 7Hacioglu K, Chen Y. Benjamin douglas automatic time expression labeling for English and Chinese text II Computational linguistics and Intelligent Text Processing. Mexico City, 2005: 548-559.
  • 8ACE (Automatic Content Extraction) Chinese Annota- tion Gubdelines for TIMEX2(Summary). Version 1.2 20050610[EB/Ol]. (2005-05-05)[2012-05-03]. http:// www.Idc.upenn.edu/projects/ACE.
  • 9刘成亮 韩海伟.知识库系统的原理及其在智能搜索引擎中的应用.电脑知识与技术,2008,(8):1512-1514.
  • 10Brill, Eric. Transformation-based error-driven learning and natural language processing: a case study in part of speech tagging. Computational Linguistics, 1995,21(4): 543-565.

二级参考文献23

  • 1Seok Bae Jang, Jennifer Baldwin. Inderjeet Mani Automatic TIMEX2 Tagging of Korean News [J].ACM Transactions on Asian Language Information processing (TALIP), 2004, 3(1) : 51-65.
  • 2Nikolai Vazov A System for Extraction of Temporal Expressions from French Texts based on Syntactic and Semantic Constraints[C]//Proceedings of the workshop on Temporal and spatial information processing, 2001, Volume 13: Article No. 14:1-8.
  • 3Estela Saquete, Patricio Martinez-barco. Rafael Mufioz Recognizing and Tagging Temporal Expressions in Spanish [C]//Workshop on Annotation Standards for Temporal Information in Natural Language (LREC), 2002: 44-51.
  • 4Mingli Wu, Wenjie Li, Qin Lu, Baoli Li. A Chinese Temporal Parser for Extracting and Normalizing Temporal Information [C]//International Joint Conference on Natural Language Processing ( IJCNLP), 2005, Volume 3651: 694-706.
  • 5David Ahn, Sisay Fissaha Adafre, Maarten De Rijke Towards Task-Based Temporal Extraction and Recognition [C]//Proceedings Dagstuhl Workshop on Annotating, Extracting, and Reasoning about Time and Events, 2005.
  • 6Kadri Hacioglu, Ying Chen. Benjamin Douglas Auto matic Time Expression Labeling for English and Chi nese Text [C]//Computational Linguistics and Intelli gent Text Processing (CICLing), 2005, Volume 3406 548-559.
  • 7贺瑞芳,秦兵,刘挺,潘越群,李生.基于依存分析和错误驱动的中文时间表达式识别[J].中文信息学报,2007,21(5):36-40. 被引量:21
  • 8Mingli Wu,Wenjie Li,Qin Lu,Baoli Li.CTEMP:A Chinese Temporal Parser for Extracting and Normalizing Temporal Information[A].IJCNLP 2005[C].694-706.
  • 9Yang Ye,Victoria Li Fossum,and Steven Abney.Latent features in automatic tense translation between chinese and english[A].In:Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing[C].Sydney,Australia:July 2006.48-55.
  • 10SemEval-2007[EB/OL].http://nlp.cs.swarthmore.edu/semeval/index.shtml.

共引文献27

同被引文献11

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部