期刊文献+

基于加权最大边缘间距准则MMC的特征选择问题

On Feature Selection of Weighted MMC Distance Based on the Maximum Margin Criterion
下载PDF
导出
摘要 特征选择是模式识别经典而重要的课题.由于不同类别样本之间存在边缘样本点,其分布区域互相交叉重叠,经典的MMC(Maximize Marginal Criterion)方法简单地采用最大化类中心距离,不利于样本分类.针对此问题,给出了一种基于加权最大边缘间距准则(加权MMC)并改进了的特征选择算法,该方法考虑了不同类别数据边缘样本点在模式分类中的作用,建立了基于最大边缘间距的新型特征评分准则,提高了边缘样本点在衡量特征判别能力时的作用.在公开数据集PIE和MIT-CBCL3000标准人脸图像库上进行了实验,结果表明,该算法与经典的MMC特征选择算法相比较具有明显的优势. Feature selection is a classical and important subject of pattern recognition. Due to the edge points among different samples whose regional distributions are overlapping, the classical MMC method is not conducive to the sample classification by simply using the maximum center distance. Therefore, a feature selection algorithm based on weighted Maximize Marginal Criterion ( MMC ) is proposed, considering the roles of edge sample points of different types of data in the pattern classification, establishing a new feature score criterion based on maximum edge distance, and improving the functions of marginal sample points in measuring feature discrimination ability. The experiments on public data set PIE and MIT-CBCL3000 face image database show that the proposed feature selection algorithm in this paper has obvious advantages compared with the classic MMC method.
出处 《温州大学学报(自然科学版)》 2014年第1期25-30,共6页 Journal of Wenzhou University(Natural Science Edition)
基金 浙江省研究生创新活动计划(YK2010093)
关键词 模式识别 加权MMC 边缘样本点 Pattern Recognition Weighted MMC Edge Sample Points
  • 相关文献

参考文献5

  • 1计智伟,胡珉,尹建新.特征选择算法综述[J].电子设计工程,2011,19(9):46-51. 被引量:46
  • 2He X F, Cai D, Niyogi P. Laplacian Score for Feature Selection [J]. IEEE transaction on pattern analysis and machine intelligence, 2006, 27(3): 507-514.
  • 3He X F, Yan S C, Hu Y X, et al. Face Recognition Using Laplacianfaces [J]. IEEE transaction on pattern analysis and machine intelligence, 2005, 27(3): 328-340.
  • 4Li H F, Tao J, Zhang K S. Efficient and Robust Feature Extraction by Maximum Margin Criterion [J]. Neural Networks, IEEE Transactions on Neural Networks, 2006, 17(1): 157-165.
  • 5Wang H X, Zheng W M, Hu Z L, et al. Local and Weighted Maximum Margin Discriminant Analysis [J]. IEEE Conference on Computer Vision and Pattern Recognition, 2007, DOI: 10.1109/CVPR.2007.383039.

二级参考文献37

  • 1Langley P.Seleetion of relevant features in machine learning[J].In:Proe.AAAI Fall Symposium on Relevanee,1994:140-144.
  • 2Langley P,Iba W.Average-case analysis of a nearest neighbour algorithm[C] //Proceedings of the Thirteenth International Joint Con-Ferenee on Artifieial Intelligence,1993:889-894.
  • 3Jain A,Zongker D.Feature seleetion:evaluation,application,and Sniall sample pedortnanee[J].IEEE transactions on pattern analysis and machine intelligence,1997,19(2):153-158.
  • 4Xing E,Jordan M,Karp R.Feature seleetion for high-dimensional genomic microarray data[C] //Intl.conf.on Machine Learning,2001:601-608.
  • 5Davies S,Russl S.Np-completeness of searehes for smallest Pos Sible feature sets[C] // In:Proc.Of the AAAI Fall 94Symposium on Relevanee,1994:37-39.
  • 6Narendra PM,Fukunaga K.A branch and bound algorithm for feature subset selection[J].IEEE Transactions on Computers,1997(26):917-922.
  • 7Kittler J,Feature set search algorithms,in:C.H.Chen,Pattern Recognition and Signal Processing,Sijthoff and Noordhoff,1978:41-60.
  • 8Pudil P,Novovicova N,Kittler J.Floating search method[J].Pattern Recognition Letters,1994(15):1119-1125.
  • 9Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Mach Learn Res,2003(3):1157-1182.
  • 10Chen Xue-wen.An improved branch and bound algorithm for feature selection[J].Pattern Recognition Letters,2003,24(12):1925-1933.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部