摘要
设G是一个有限群,记ω(G)为G的每个元素的阶的集合,称为谱.记τ为自然数集N的子集,满足1∈τ,且若m∈τ,则m的正因子s∈τ,称τ为合理子集.得到了当ω(G)的任意一个合理子集τ都满足h(τ)≥1时群G的性质,其中h(τ)为满足ω(H)=τ的群H的同构类的个数.
Let Gbe a finite group,and denote byω(G)the spectrum of G,i.e.,the set of its element orders.Denote byτthe reasonable subset of the set of natural numbers Nthat satisfies 1∈τand if m∈τ, then s∈τ,where s is a positive factor of m.We get the property of group Gwhen every reasonable subset τω(G)that satisfies h(τ)≥1,where h(τ)stands for the number of isomorphism classes of finite group H with ω(H)=τ.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第12期59-62,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11271301)
关键词
好群
谱
合理子集
同构类的个数
good group
spectrum
reasonable subset
the number of isomorphism classes