期刊文献+

X_d-框架的Bessel性质

The Besselian Property of X_d-Frames
下载PDF
导出
摘要 引入了Banach空间中Xd-Riesz基、(Xd,σ)-近Riesz基和Xd-框架的Bessel性质,给出了Xd-框架、Xd-Riesz基和(Xd,σ)-近Riesz基的刻画,讨论了Xd-框架具有Bessel性质的等价条件. Xd-Riesz bases,(Xd,σ)-near Riesz bases and the concept of the Besselian property of Xd-frames for Banach spaces are introduced.Some characterizations of an Xd-frame,an independent Xd-frame,an Xd-Riesz bases and an(Xd,σ)-near Riesz bases are given.In addition,some necessary and sufficient conditions for an Xd-frame to be Besselian are discussed.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第12期76-82,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571113)
关键词 Xd-框架 Xd-Riesz基 (Xd σ)-近Riesz基 Bessel性质 Xd-frame Xd-Riesz bases (Xd σ)-near Riesz bases Besselian property
  • 相关文献

参考文献15

  • 1Yu Can ZHU.q-Besselian Frames in Banach Spaces[J].Acta Mathematica Sinica,English Series,2007,23(9):1707-1718. 被引量:4
  • 2李春艳,曹怀信.Banach空间中的X_d框架与Reisz基[J].数学学报(中文版),2006,49(6):1361-1366. 被引量:11
  • 3马健.Banach空间的Hlder对偶空间及Hlder算子的Hlder对偶算子[J].西南师范大学学报(自然科学版),2000,25(5):569-573. 被引量:1
  • 4Pete Casazza,Ole Christensen,Diana T. Stoeva.Frame expansions in separable Banach spaces[J].Journal of Mathematical Analysis and Applications.2005(2)
  • 5Ole Christensen,Diana T. Stoeva.p-Frames in Separable Banach Spaces[J].Advances in Computational Mathematics (-).2003(2-4)
  • 6Akram Aldroubi,Qiyu Sun,Wai-Shing Tang.p-Frames and Shift Invariant Subspaces of Lp[J].Journal of Fourier Analysis and Applications.2001(1)
  • 7Karlheinz Gr?chenig.Describing functions: Atomic decompositions versus frames[J].Monatshefte für Mathematik.1991(1)
  • 8R. J. Duffin,A. C. Schaeffer.A class of nonharmonic Fourier series[J].Transactions of the American Mathematical Society.1952(2)
  • 9Chui CK.An Introduction to Wavelets[]..1992
  • 10Casazza P G.The art of frame theory[].Taiwan Residents Journal of Mathematics.2000

二级参考文献22

  • 1Rudin W 赵俊峰(译).泛函分析[M].武汉:湖北教育出版社,1989.102-106.
  • 2赵峰(译),泛函分析,1989年,102页
  • 3Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 4Young, R. M., Introdution to Nonharmonic Fourier Series, Academic Press, New York, 1980
  • 5Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 6Casazza, P. G., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3(5), 543-557 (1997)
  • 7Casazza, P. G., Christensen, O.: Frames containing a Riesz basis and preservation of this property under perturbations. SIAM J. Math. Anal., 29(1), 266-278 (1998)
  • 8Christensen, O.: A Paley-Wiener theory for frame. Proc. Amer. Math. Soc., 123(7), 2199-2201 (1995)
  • 9Christensen, O.: Frame perturbations. Proc. Amer. Math. Soc., 123(4), 1217-1220 (1995)
  • 10Christensen, O.: An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部