期刊文献+

基于量子元胞自动机的模可变计数器设计

Design of the Modulus Alterable Counter Based on the Quantum-Dot Cellular Automata
下载PDF
导出
摘要 模可变计数器是一种功能丰富、灵活性很强的时序逻辑电路。基于一种二维纳米尺度计算范例量子元胞自动机(QCA)设计了一种2位模可变计数器单元电路,该计数器由2个JK触发器和5个基本逻辑门构成。采用置零模式设置了计数器的初始状态,该方法为解决QCA时序逻辑电路设计中输出端随机初始状态的消除问题提供了一条有效途径。在QCA版图设计过程中,通过延迟匹配规则完成了反馈回路的时钟布线。QCADesigner软件仿真结果表明,设计的计数器具有正确的逻辑功能,当两位模式控制信号M2M1为01,10和11时,分别实现了模2、模3和模4计数。 Modulus alterable counter is a sequential logic circuit, which has abundant function and strong flexibility. A 2-bit modulus alterable counter unit circuit was designed based on the quan- tum-dot cellular automata (QCA) with two-dimensional computing paradigm in nanometer scale. The proposed counter was composed of two JK flip-flops and five basic logic gates. The initial state of the counter was established by a zero mode. This method provides an effective way to solve the problem of the random initial states elimination of the output cell during the design of the sequential logic circuit in QCA. The clock wiring of feedback loop was finished by the delay matching rule in the process of QCA layout design. The simulation results of the QCADesigner software show that the proposed counter has correct logic function. When the two bits mode con- trol signals M2M1 are 01, 10 and 11, the modulus-2 count, modulus-3 count and modulus-4 count are realized, respectively.
出处 《微纳电子技术》 CAS 北大核心 2014年第1期12-16,共5页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61172043) 陕西省自然科学基础研究计划重点项目(20HJZ015)
关键词 量子元胞自动机(QCA) 计数器 模可变 时钟布线 随机初始状态 quantum-dot cellular automata (QCA) counter modulus alterable elock wiring random initial state
  • 相关文献

参考文献10

  • 1ITRS organization. International technology roadmap for semi- conductors, process integration devices and structures [EB/OL]. (2(112-01 - 20) [2013 - 08 - 131. http://www, itrs. net/ Links/2011 ITRS/Home2011. htr.
  • 2ASKARI M, TAGHIZADEH M, FARDAD K. Design and analysis of a sequential ring counter for QCA implementation [C] // Proceedings of the International Conference on Com- puter and Communication Engineering. Kuala Lumpur, Malaysia, 2008:933 - 936.
  • 3YANG X K, CAI L, ZHAO X H, et al. Design and simula- tion of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study E J3- Micro- electronics Journal, 2010, 41 (1): 56-63.
  • 4KONG K, SHANG Y, LU R Q. Counter designs in quantum- dot cellular automata [C] // Proceedings of the 10th IEEE Conference on Nanotechnology. Seoul, Korea, 2010:1130 - 1134.
  • 5LENT C S, TOUGAW P D, POROD W, et al. Quantum cel- lular automata [J]. Nanotechnology, 1993, 4 (1) .. 49 - 57.
  • 6LENT C S, TOUGAW P D. A device architecture for compu- ting with quantum dots [J]- Proceedings of the IEEE, 1997, 85 (4) : 54l - 557.
  • 7HENNESSY K, LENT C S. Clocking of molecular quantum- dot cellular automata [J]. Journal of Vacuum Science b- Tech- nology: B, 2001, 19 (5) : 1752- 1755.
  • 8HUANG J, MOMENZADEH M, LOMBARDI F. Design of sequential circuits by quantum-dot cellular automata [J] Microelectronics Journal, 2007, 38 (4/5) : 525 - 537.
  • 9LIU W Q, LU L, O"NEILL M, et al. Design rules for quan- tum-dot cellular automata [C] // Proceedings of 2011 IEEE International Symposium on Circuits and Systems (ISCAS). Rio de Janeiro, Brazil, 2011:2361-2364.
  • 10CHUNG W J, SMITH B, SUNG K L. QCA physical design with crossing minimization [C] // Proceedings of the 5th IEEE Conference on Nanotechnology. Nagoya, Japan, 2005: 108- 1ll.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部