期刊文献+

熵产方法在旋风分离器内部能耗分析中的应用 被引量:12

Application of entropy generation method for analyzing energy loss of cyclone separator
下载PDF
导出
摘要 应用雷诺应力模型对壁面绝热的旋风分离器的流场进行数值分析,对模拟结果采用熵产分析法和■分析法计算分离器的■损,证实了热力学第二定律研究旋风分离器能量损失的可行性。分别计算了旋风分离器内湍流熵产、黏性熵产、壁面熵产和温差传热熵产。结果表明,壁面熵产和湍流熵产占总熵产的比例分别大于56%和38%,是影响旋风分离器能耗的主要因素。分析了旋风分离器内局部熵产,结果表明,芯管附近体积占旋风分离器体积的10%,其熵产占分离器总熵产的比例高于14%,灰斗入口附近体积仅为旋风分离器体积的5.8%,其熵产占总熵产的比例高于16%,因此芯管附近和排尘口附近是旋风分离器能耗的主要区域。 In this paper, entropy generation analysis is applied to investigate cyclone separator. The Reynolds stress model is used to simulate the flow field in a cyclone separator with adiabatic wall. The energy loss predicted by pressure drop and exergy loss predicted by entropy generation analysis method and exergy analysis method for calculation results of computational fluid dynamics indicate the availability of the second law of thermodynamics for investigating the energy consumption in cyclone separator. The entropy generation due to turbulent dissipation, viscosity in turbulent core flows, fluid friction near the wall, and heat transfer are calculated with the computation of turbulent kinetic dissipation rate, velocity, wall shear stress and temperature. It is found that the fluid friction near the wall and turbulent dissipation are the main factors for energy loss of cyclone separator. The percent of entropy generation in the vicinity of finder vortex and dust exit with the volume ratio of 10% and 5.8% in the cyclone separator is over 14%and 16%, respectively. The result can serve as a direction to decrease energy loss of cyclone separator.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第2期583-592,共10页 CIESC Journal
基金 国家重点基础研究发展计划项目(2012CB720500)~~
关键词 计算流体力学 旋风分离器 雷诺应力模型 流动 CFD cyclone separator Reynolds stress model flow entropy
  • 相关文献

参考文献31

  • 1Ramachandran G,Leith D,Dirgo J,Feldman H. Cyclone optimization based on a new empirical model for pressure drop[J].{H}Aerosol Science and Technology,1991,(2):135-148.
  • 2Leith D,Mehta D. Cyclone performance and design[J].{H}Atmospheric Environment,1973,(5):527-549.
  • 3Karagoz I,Avci A. Modeling of the pressure drop in tangential inlet cyclone separators[J].{H}Aerosol Science and Technology,2005,(9):857-865.
  • 4Hoffmann A C,Stein L E. Gas Cyclones and Swirl Tubes:Principles,Design and Operation[M].New York:Springer,2002.41-55.
  • 5Shepherd C B,Lapple C E. Flow pattern and pressure drop in cyclone dust collectors[J].Industrial &Engineering Chemistry,1940,(9):1246-1248.
  • 6Avci A,Karagoz I. Theoretical investigation of pressure losses in cyclone separators[J].{H}International Journal of Heat and Mass Transfer,2001,(1):107-117.
  • 7Zhao Bingtao. A theoretical approach to pressure drop across cyclone separator[J].{H}Chemical Engineering & Technology,2004,(10):1105-1108.
  • 8Chen J Y,Shi M X. A universal model to calculate cyclone pressure drop[J].{H}Powder Technology,2007,(3):184-191.
  • 9Shepherd C B,Lapple C E. Flow pattern and pressure drop in cyclone dust collectors[J].{H}Industrial and Engineering Chemistry,1939,(8):972-984.
  • 10Shepherd C B,Lapple C E. Flow pattern and pressure drop in cyclone dust collectors cyclone without inlet vane[J].{H}Industrial and Engineering Chemistry,1940,(9):1246-1248.

二级参考文献50

共引文献65

同被引文献111

引证文献12

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部