期刊文献+

微生物电解系统生物阴极的硫酸盐还原特性研究 被引量:6

Characterization of Biocatalysed Sulfate Reduction in a Cathode of Microbial Electrolysis System
原文传递
导出
摘要 针对传统硫酸盐生物还原方法中供氢体系能耗大和氢气利用率低的特点,构建双极室微生物电解系统(microbialelectrolysissystem,MES),研究了微生物利用阴极作为电子供体去除废水中硫酸盐及电子利用的特性.外加电压为0.8V时,MES生物阴极在36h内s0:一平均去除量为109.8mg·L-1,平均还原速率可达73.2mg·(L·d).运行时MES的最高电流密度为50-60A·m-1,电子回收率为(43.3±10.7)%,约90%的电子被用于还原S02/4-.微生物利用MES阴极产生的H:作为电子供体还原S02/4-,主要还原产物为溶解态的S02/4-和气态的H2S,还原过程主要发生在前12h.对MES施加不同外加电压的实验显示,外加电压为0.8V时的S02/4-去除率和电荷量都比0.4V时高;但0.4V情形下MES的电子回收率可达到70%,且周期结束时阴极H2低于检出限,推测微生物可以直接利用阴极的电子从而提高了能量效率.实验结果最终表明,微生物可利用MES的阴极进行代谢去除废水中的S02/4-,阳极微生物产生电子降低了系统能耗,这为含硫酸盐废水的高效低耗处理提供了新的研究思路. In order to improve H2 utilization efficiency and to reduce energy consumption during the hydrogenotrophic sulfate reduction process, a two-chambered microbial electrolysis system (MES) with a biocathode was constructed. The performance of MES in terms of sulfate removal and the electron utilization was studied. With an applied voltage of 0.8 V, biocathode removed about 109.8 mg. L-1 of SO24- from the wastewater within 36 h of operation, and average reductive rate reached 73.2 mg· ( L· d) -1. The highest current density obtained from the MES was 50-60 A. m-3. The total coulomb efficiency achieved in a cycle was (43.3 ± 10.7)% , and around 90% of the effective electrons were used by the cathode bacteria for SO24- reduction. During the operation of MES, the major products of SO24- bio-reduction are sulfide and hydrogen sulfide. With an applied voltage of 0.4 V, both the SO24- removal rate and electron output decreased compared with that ofO. 8 V; however, the electric charge efficiency obtained by the MES increased and reached 70% when 0.4 V was applied. Meanwhile, ignorable H2 gas was detected at the end of the cycle, indicating bacteria might directly use cathode as the electron donor thus enhanced energy efficiency. The bacteria could use cathode of the MES as electron donor to reduce SO:4- effectively, which may provide a new method to lower energy consumption of the hydrogenotrophic sulfate reduction process, making advanced treatment for sulfate containing wastewater more affordable for practical applications.
出处 《环境科学》 EI CAS CSCD 北大核心 2014年第2期626-632,共7页 Environmental Science
基金 广东省环境污染控制与修复技术重点实验室开放基金项目(2013K0002) 广东省水与大气污染防治重点实验室开放基金项目(GD2012A01) 国家自然科学基金项目(51039007,51179212,51278500)
关键词 微生物电解系统 生物阴极 硫酸根 硫酸盐还原菌 氢气 microbial electrolysis system(MES) biocathode sulfate sulfate-reducing bacteria(SRB) hydrogen
  • 相关文献

参考文献25

  • 1Sarti A, Pozzi E, Chinalia F A, et al. Microbial processes and bacterial populations associated to anaerobie treatment of sulfate- rich wastewater [ J ]. Process Biochemistry, 2010, 45 ( 2 ) : 164- 170.
  • 2Khanal S K, Huang J. ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater [ J ]. Water Research, 2003, 37(9): 2053-2062.
  • 3谢水波,王水云,张浩江,刘迎九,王劲松.硫酸盐还原菌还原U(Ⅵ)的影响因素与机制[J].环境科学,2009,30(7):1962-1967. 被引量:15
  • 4贺气志,陈辉,王丹,李华,丁兴华,邓乐.混合硫酸盐还原菌与Cu/Fe颗粒协同处理含铬废水的研究[J].环境科学,2011,32(7):2000-2005. 被引量:15
  • 5Qiu R, Zhao B, Liu J, et al. Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area [ J]. Journal of Hazardous Materials, 2009, 164(2-3) : 1310-1315.
  • 6杨姗姗,张旭,徐慧纬,李广贺.生物-电化学耦合系统供氢脱硫效应及微生物学研究[J].环境科学,2010,31(3):709-714. 被引量:7
  • 7Cheng S, Logan B E. High hydrogen production rate of microbialelectrolysis cell ( MEC ) with reduced electrode spacing [ J ]. Bioresouree Technology, 2011, 102 ( 3 ) : 3571-3574.
  • 8Logan B E, Call D, Cheng S, st al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter [ J ]. Environmental Science & Technology, 2008, 42 (23) : 8630- 8640.
  • 9Kundu A, Sahu J N, Redzwan G, et al. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell [J]. International Journal of Hydrogen Energy, 2013, 38(4) : 1745-1757.
  • 10Zhang Y, Merrill M D, Logan B E, et al. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells [J]. International Journal of Hydrogen Energy, 2010, 35(21 ) : 12020-12028.

二级参考文献77

共引文献254

同被引文献96

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部