期刊文献+

基于主机行为特征的恶意软件检测方法 被引量:5

Malware detection by monitoring host's activities
下载PDF
导出
摘要 针对僵尸、远控木马等恶意软件检测问题,提出一种基于主机行为的异常检测模型。该模型通过持续性分析算法,判断主机与外部特定目标的通信行为是否具有周期性或连续性,提取出可疑的网络行为,并根据网络行为的触发、启动等异常检测规则对这些可疑的网络行为进行分析,判断主机是否感染恶意软件。实验结果表明,该模型可有效检测出感染恶意软件的主机,并具有很低误报率。 To detect malware such as bot and trojan, this paper proposed a method based on inherent activities of compro- mised hosts. This method identified suspicious network traffic through persistent arithmetic that measured if hosts had temporal regularity when communicating with other hosts, and analyzed suspicious network traffic through rules of user driven activities and occurring moments to detect compromised hosts. The results show that the system can accurately detect compromised hosts with low error rates.
出处 《计算机应用研究》 CSCD 北大核心 2014年第2期547-550,554,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(60903126 60872145)
关键词 网络安全 恶意软件 僵尸网络 木马 network security malware botnet trojan
  • 相关文献

同被引文献46

  • 1李春光,赵彬,周保群.一种基于行为的主机入侵防护系统设计与实现[J].计算机工程,2007,33(6):129-131. 被引量:5
  • 2VirusTotal, https://www.virustotal.com/.
  • 3Radmin, http://www.radmin.cn/.
  • 4Weaver N, Paxson V, Staniford S, et al. A taxonomy of computer worms. Proc. of the 2003 ACM workshop on Rapid malcode. ACM, 2003: 11-18.
  • 5Newsome J, Song D. Dynamic taint analysis: Automatic detection and generation of software exploit attacks. NDSS. 2005.
  • 6Berman A, Bourassa V, Selberg E. TRON: Process-specific file protection for the UNIX operating system. USENIX. 1995: 165-175.
  • 7Peisert S, Bishop M, Karin S, et al. Analysis of computer intrusions using sequences of function calls. IEEE Trans. on Dependable and Secure Computing, 2007, 4(2): 137-150.
  • 8Shankarapani MK, Ramamoorthy S, Movva RS, et al. Malware detection using assembly and API call sequences. Journal in Computer Virology, 2011, 7(2): 107-119.
  • 9Luk CK, Cohn R, Muth R, et al. Pin: building customized program analysis tools with dynamic instrumentation. Aem Sigplan Notices. ACM, 2005, 40(6): 190-200.
  • 10Tegeler F, Fu x, Vigna G, et al. Botfinder: Finding bots in network traffic without deep packet inspection. Proc. of the 8th International Conference on Emerging Networking Experiments and Technologies. ACM. 2012. 349-360.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部