期刊文献+

数量特征敏感问题加法模型分层二阶段抽样样本大小研究及其应用 被引量:3

The Method to Estimate the Sample Size for Quantitative Sensitive Questions in Stratified Two- Stage Sampling and its Application
下载PDF
导出
摘要 【提要】目的为敏感问题复杂抽样调查提供科学的样本大小估计公式。方法使用哥西不等式、求条件极小值点等方法,从数学上推导出样本大小计算公式。对北京市男男性行为人群进行了预调查,为计算正式调查的样本大小估计出相关统计量的数值。结果对敏感问题加法模型分层二阶段抽样,推导出在限定抽样误差的值使调查费用达到最小和限定调查费用的值使抽样误差达到最小时所需的样本大小估计公式;在北京市男男性行为人群正式调查中,在限定抽样误差V(μ^-)的值V=0.0105使调查费用达到最小,第一层(15~29岁)需抽取的区县数n11=7(个),平均每个区县需抽取的男男性行为者人数为n21^-=115人;第二层(30~49岁)需抽取的区县数n12=7(个),平均每个区县需抽取的男男性行为者人数为n22^-=107人。结论本文提供的数量特征敏感问题加法模型分层二阶段抽样调查样本大小估计公式,具有较大的理论意义和实际应用价值。 Objective To deduce the formulas of sample size to minimize the costs of taking the samples for specified values of the sampling errors and to minimize the sampling errors for specified costs for additive model of quantitative sensitive questions in two - stage stratified sampling. Methods The minimum method and the Cauchy - Schwards inequality were ap- plied. Results The formulas of sample size for additive model of quantitative sensitive questions in stratified two - stage sam- pling were deduced and were employed successfully in survey study of the MSM in Peking about the number of the different sex- ual partners per month per person. Conclusion
出处 《中国卫生统计》 CSCD 北大核心 2014年第1期45-48,共4页 Chinese Journal of Health Statistics
基金 国家自然科学基金项目(项目编号:81273188)
关键词 敏感问题加法模型 男男性行为 分层二阶段抽样 样本大小 Additive model of sensitive questions MSM Stratified two - stage sampling Sample size
  • 相关文献

参考文献8

二级参考文献20

  • 1蔡文德,冯铁建,谭京广,陈琳,石向东,陈佩玲,江丽珠,陶晓燕.男同性恋者行为特征和STD/HIV感染的调查[J].现代预防医学,2005,32(4):328-330. 被引量:64
  • 2Cochran W G.抽样技术[M].张尧庭,吴辉,译.北京:中国统计出版社,1987:22,93-95,432,491.
  • 3Cochran WG. Sampling Techniques. 3rd Edition. Wiley, New York, 1977, 233-242.
  • 4Cochran W.G.抽样技术.张尧庭,吴辉译.北京:中国统计出版社,1987,93.95、432、491.
  • 5Gerty JLM, Lensvelt-Mulders JJH, Peter GM, Cora JMM. Meta-Analysis of Randomized Response Research: Thirty-Five Years of Validation.Sociological Methods & Research, 2004, 33 : 319-348.
  • 6丁元林,高歌主编.卫生统计学(1版)[M].北京:科学出版社,2008.
  • 7Wang J F, Gao G. The estimation of sampling size in multi-stage sampling and its application in medical survey [J]. Applied Mathematics and Computation, 2006, (178): 239--249.
  • 8Gerty J L M, Lensvelt-Mulders J J H, Peter G M, Cora J M M. Meta-analysis of randomized response research: Thirty-five years of validation [J]. Sociological Methods & Research, 2005, 33: 319-348.
  • 96苏良军.高等数理统计.北京大学出版社,2007,3.
  • 10Wang Jianfeng ,Gao Ge. The estimation of sampling size in multi-stage sampling and its application in medical survey. Applied Mathematics and Computation,2006,178 : 239-249.

共引文献35

同被引文献16

  • 1肖红新,梅景良,陈鑫珠,胡庆庆.大学生考试作弊情况调查分析及其遏制对策探讨[J].福建农林大学学报(哲学社会科学版),2009,12(1):102-105. 被引量:15
  • 2Cruyff M J,Van Den Hout A,Van Der Heijden P G,et al.Log-linear randomized-response models taking self-protective response behavior into account[J].Sociological Methods&Research,2007,36(2):266-282.
  • 3Wang Jianfeng,Gao Ge,Fan Yubo,et al.The estimation of sample size in multi-stag esampling and its application in medical survey[J].Applied Mathematics and Computation,2006,178:239-249.
  • 4Cruyff M J, Van Den Hout A, Van Der Heijden P G, et al. Log-linear Randomized-Response Models Taking Self-Protective Response Be- havior Into Account [J]. Sociological methods & research, 2007, 36(2).
  • 5Warner S L. Randomized Response: A Survey Technique for Elimi- nating Evasive Answer Bias[J]. Journal of the American Statistical As- sociation, 1965, 60(309).
  • 6Jianfeng Wang, Ge Gao, Yubo Fan, et al. The Estimation of Sample Size in Multi-Stag Esampling and Its Application in Medical Survey [J]. Applied Mathematics and Computation, 2006,178.
  • 7华东师范大学数学系.数学分析(下册)第1版[M].北京:高等教育出版社.2002.
  • 8Christofides T C.A Generalized Randomized Response Technique [J]. Metrika, 2003,57(2).
  • 9王磊,高歌,于明润.敏感问题双无关问题模型分层二阶段整群抽样的统计方法及应用[J].中国卫生统计,2011,28(1):37-39. 被引量:5
  • 10李海.大学生考试作弊情况调查分析及其遏制对策[J].职业时空,2011,7(6):169-170. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部