期刊文献+

基于CT体数据的超声图像实时模拟方法

A Novel Real-Time Ultrasound Simulation Method
下载PDF
导出
摘要 针对临床超声图像中人体组织的清晰度和辨识度较低,病灶及其周围组织的相对关系难于观测的问题,提出一种基于CT体数据的超声图像实时模拟方法.首先针对血液在超声图像中存在的多普勒现象建立多尺度响应函数,实现管状结构的检测与增强;然后提出一种超声邻域差值比重方法,实现对单换能器反射系数和噪声的模拟;最后通过离散窗函数实现对多换能器图像的调制与融合.实验结果表明,该方法可实现对任意视角超声图像的逼真模拟,处理速度达20帧/s,可应用于临床超声图像的培训过程. Ultrasound has been widely used for diagnosis in clinical practice. However, as the contrast of ultrasound image is usually low, the abnormal tissue is hard to be discriminated from the normal anatomic structures. Hence, in this paper, a novel ultrasound simulation method based on CT image is proposed for the training purpose of the ultrasound image recognition. First, a multi-scale method is developed to enhance vascular tree structures to simulate the Doppler phenomenon of ultrasound; Second, reflection parameter of a single transducer element with speckle noise is calculated by the weighted integration of adjacent regions on the ultrasound propagation path in the CT images. Third, a discrete window function is employed to produce integration and fusion effects of multiple transducer elements. Experimental results show that realistic ultrasounds can be generated at any imaging angle from CT image. And the simulation speed reaches 20fps, which can be used for ultrasound training procedures in clinical practices.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第2期217-224,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2010CB732505) "十二五"国家科技支撑计划(2013BAI01B01) 国家"八六三"高技术研究发展计划(2013AA010803) 广东省中国科学院全面战略合作项目(2011B090300079)
关键词 医学成像 超声模拟 多尺度增强 medical imaging ultrasound simulation multi-scale enhancement
  • 相关文献

参考文献2

二级参考文献28

  • 1单华宁,王平立,王执铨,王珏.多普勒超声频谱图像信息提取方法研究[J].中国图象图形学报(A辑),2004,9(10):1245-1248. 被引量:4
  • 2张榆锋,马华红,余琦,陈建华,施心陵.超声多普勒血流信号平均频移估计的仿真研究[J].系统仿真学报,2007,19(4):865-867. 被引量:2
  • 3Dokur Z,Olmez T.Tissue segmentation in ultrasound images by using genetic algorithms[J].Expert Systems with Applications,2008,34(4):2739-2746.
  • 4Kolar R,Kozumplik J.Fuzzy approach in ultrasound image segmentation[C]//Proceedings of the 7th Fuzzy International Conference on Computational Intelligence.Berlin:Springer,2001:924-929.
  • 5Iakovidis D K,Savelonas M A,Karkanis S A,et al.A genetically optimized level set approach to segmentation of thyroid ultrasound images[J].Applied Intelligence,2007,27(3):193-203.
  • 6Adams R,Bischof L.Seeded region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(6):641-647.
  • 7Baillard C,Hellier P,Barillot C.Segmentation of brain 3D MR images using level sets and dense registration[J].Medical Image Analysis,2001,5(3):185-194.
  • 8Loupas T,Mcdicken W N,Allan P L.An adaptive weighted median filter for speckle suppression in medical ultrasonic images[J].IEEE Transactions on Circuits and Systems,1989,36(1):129-135.
  • 9Shareef N,Wang D L,Yagel R.Segmentation of medical images using LEGION[J].IEEE Transactions on Medical Imaging,1999,18(1):74-91.
  • 10Friedman M H,Deters O J,Bargeron C B,et al.Shear-dependent thickening of the human Arterial Intima[J].Atherosclerosis,1986,60(2):161-171.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部