期刊文献+

结合SURF的数字稳像技术 被引量:5

Digital Image Stabilization Based on SURF
下载PDF
导出
摘要 为了快速准确地稳定视频图像,提出以加速鲁棒特征(SURF)为基础的数字稳像技术.首先针对SURF不适合实时应用的缺陷,根据实际需要和图像尺寸选择皇后模板抽样或者熵值预判来减少建立特征描述子的时间;其次采用基于向量内积的最近邻和次近邻距离比率的方法确定粗匹配结果,并根据特征点本身性质提出级联滤波算法,进一步去除局部匹配点对;最后采用迭代最小二乘法和仿射参数模型求解全局参数并进行反向补偿,得到稳定的视频图像.实验结果表明,该技术能达到有效稳定视频图像的目的,与原SURF算法相比运算时间有极大地提高. In order to stabilize the video images quickly and accurately, the digital image stabilization technology based on speed-up robust features is proposed. Firstly, under the actual requirements and the image sizes to select the queen pattern or local entropy values as the pre-selection operation, which can reduce the time of building feature descriptors. Secondly, using the distance ratio of the vector inner product from the closest neighbor to the second-closest neighbor, to determine the coarse match set, and then removing the mismatches by the cascade feature filters. Finally, both the iterative least squares method and affine model are used to solve the optimal global motion parameters and compensate the current image, and then obtain stable video images. The simulation results show that the effectiveness of the stabilization algorithm, and the computation time is greatly improved compared to the traditional SURF algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第2期241-247,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60875025) 中央高校基本科研业务费专项资金
关键词 数字稳像技术 加速鲁棒特征 皇后模板 迭代最小二乘法 digital image stabilization speed-up robust features queen pattern iterative least squares
  • 相关文献

参考文献6

二级参考文献63

共引文献75

同被引文献51

  • 1卜彦龙,沈林成.基于图像交叉分块的电子稳像算法[J].电子与信息学报,2007,29(3):606-610. 被引量:2
  • 2LEE T H, LEE Y G, SONG B CH. Fast 3D video stabilization using ROI-based warping [J]. Journal of Visual Communication and Image Representation, 2014, 25(5):943-950.
  • 3ZHOU Z H, JIN H L, MA Y. Plane-based content preserving warps for video stabilization[C].IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2013: 2299-2306.
  • 4TANG CH ZH, WANG R G. Sparse moving factorization for subspace video stabilization [C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2014: 4314-4318.
  • 5KIM S W, YIN SH M, YUN K M, et al. Spatio-temporal weighting in local patches for direct estimation of camera motion in video stabilization [J]. Computer Vision and Image Understanding, 2014, 118:71-83.
  • 6ZHU J J, GUO B L. Electronic image stabilization algorithms based on adaptive motion filter [J]. Journal of Theoretical and Applied Information Technology, 2013, 50(1):204-209.
  • 7WALHAA, WALI A, ALIMI A M. Video stabilization for aerial video surveillance [C]. AASRI Conference on Intelligent System and Control, 2013, 4:72-77.
  • 8AGUILAR W G, ANGULO C. Robust video stabilization based on motion intention for low-cost micro aerial vehicles [C].2014 11th International Conference on Multi-Conference on Systems, Signals & Devices, 2014:1-6.
  • 9SONG CH H, ZHAO H, JING W, et al.Robust video stabilization based on particle filtering with weighted feature points [J].IEEE Transactions on Consumer Electronics, 2012, 58(2):570-577.
  • 10KIM S K, KANG S J, WANG T S. et al. Feature point classification based global motion estimation for video stabilization [J].IEEE Transactions on Consumer Electronics, 2013, 59(1):267-272.

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部