期刊文献+

基于选择性Gabor滤波器组的网络视频台标识别 被引量:4

TV Logo Recognition for Internet Videos Based on Selective Gabor Filter Bank
下载PDF
导出
摘要 针对网络视频中模糊变化,以及镂空、透明台标的背景变化都易造成台标区域内容变化,导致现有台标识别算法效率降低的问题,提出一种针对网络视频的鲁棒的台标识别方法.为了应对多种台标变化,提出一种基于Gabor滤波器组的近似不变特征的鲁棒台标特征;建立了一种由拟合特征簇表面获得的若干超椭球组成的台标判定模型,用计算高维空间点和超椭球位置关系取代复杂的分类算法,且可以只利用单帧信息进行台标识别,显著地提高了判定速度.实验结果表明,该方法较好地解决了台标识别中模糊变化、镂空和透明台标背景变化下的识别问题,能够高效识别各种台标,在单帧条件下平均F1统计变量达97.3%. Recognizing TV logo in internet videos is a very challenge task, because the logo region is vulnerable to blurring and background changes dramatically especially for the hollow-out or semitransparent logos. Aimed at solving these problems, a Gabor filter bank-based approximate invariant feature is proposed to construct robust logo features against blurring and background changes. A new logo matching model is built on some certain fitted ellipsoids of the feature cluster's surfaces, so that complex classification may be replaced by simple determining the position relationship between logo feature and ellipsoids, which can dramatically speed up logo matching and enable TV logo recognition with one single frame. Experiments show that tb, e proposed method can efficiently recognize all kinds of logos and achieves 97. 3% F1 measurement on average.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第2期248-257,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61273247 61271428)
关键词 网络视频 台标识别 GABOR滤波器 椭球拟合 internet videos TV logo recognition Oabor filter ellipsoid fitting
  • 相关文献

参考文献13

  • 1周献中,史迎春,王韬.基于HSV颜色空间加权Hu不变矩的台标识别[J].南京理工大学学报,2005,29(3):363-367. 被引量:11
  • 2Yan W Q,Wang J,Kankanhalli M S. Automatic video logo detection and removal[J].{H}Multimedia Systems,2005,(5):379-391.
  • 3Ozay N,Sankur B. Automatic TV logo detection and classification in broadcast videos[OL].http://www.eurasip.org/Proceedings/EusipCo2009/Contents/Titles-g.html,2012.
  • 4Nieto P,Cózar J R,Gonzalez-Linares J M. A TV-logo classification and learning system[A].Los Alamitos:IEEE Computer Society Press,2008.2548-2551.
  • 5Wang J Q,Duan L Y,Li Z L. A robust method for TV logo tracking in video streams[A].Los Alamitos:IEEE Computer Society Press,2006.1041-1044.
  • 6Zhang L,Xia T,Zhang Y. Hollow TV logo detection[A].Los Alamitos:IEEE Computer Society Press,2011.3581-3584.
  • 7Gao K,Lin S X,Zhang Y D. Logo detection based on spatial-spectral saliency and partial spatial context[A].Los Alamitos:IEEE Computer Society Press,2009.322-329.
  • 8汪文英,张冬明,张勇东,李锦涛.利用仿射变换的快速空间关系验证[J].计算机辅助设计与图形学学报,2010,22(4):625-631. 被引量:7
  • 9Jones J P,Palmer L A. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex[J].{H}Journal of Neurophysiology,1987,(6):1233-1258.
  • 10Fogel I,Sagi D. Gabor filters as texture discriminator[J].{H}Biological Cybernetics,1989,(2):103-113.

二级参考文献24

  • 1Matas J,Chum O,Urban M,et al.Robust wide-baseline stereo from maximally stable extremal regions[J].Image and Vision Computing,2004,22(10):761-767.
  • 2Mikolajczyk K,Tuytelaars T,Schmid C,et al.A comparison of affine region detectors[J].International Journal of Computer Vision,2006,65(1):43-72.
  • 3Sivic J,Zisserman A.VideoGoogle:a text retrieval approach to object matching in videos[C]//Proceedings of the 9th IEEE International Conference on Computer Vision,Washington D C,2003:1470-1477.
  • 4Nistér D,Stewénius H.Scalable recognition with a vocabulary tree[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,New York,2006:2161-2168.
  • 5Philbin j,Chum O,Isard M,et al.Object retrieval with large vocabularies and fast spatial matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis,2007:1-8.
  • 6Zheng Q F,Wang W Q,Gap W.Effective and efficient object-based image retrieval using visual phrases[C]//Proceedings of the 14th ACM International Conference on Multimedia,Santa Barbara,2006:77-80.
  • 7Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8Mikolajczyk K,Schmid C.Scale & afflne invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86.
  • 9Lowe D G.Object recognition from local scale-invariant features[C]//Proceedings of International Conference on Computer Vision,Kerkyra,1999:1150-1157.
  • 10Carneiro G,Jepson A D.Flexible spatial configuration of local image features[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2089-2104.

共引文献16

同被引文献25

  • 1史迎春,周献中,方鹏飞.综合利用形状和颜色特征的台标识别[J].模式识别与人工智能,2005,18(2):216-222. 被引量:13
  • 2周献中,史迎春,王韬.基于HSV颜色空间加权Hu不变矩的台标识别[J].南京理工大学学报,2005,29(3):363-367. 被引量:11
  • 3王建,贺翼虎,周源华.新闻视频静态图形标识分割[J].上海交通大学学报,2006,40(5):758-761. 被引量:4
  • 4张伟,蒋宏,任章.自适应多阈值图像分割算法[J].自动化技术与应用,2007,26(8):71-73. 被引量:17
  • 5Wang J Q, Duan L Y, Li Z L, et al. A robust method for TV lo- go tracking in video streams[ C]//Proceedings of IEEE inter- national conference on multimedia and expo. Los Alamitos: IEEE Computer Society Press,2006:1041-1044.
  • 6Zhang L, Xia T, Zhang Y, et al. Hollow TV logo detection [ C]//Proceedings of the 18th IEEE international conference on image processing. Los Alamitos: IEEE Computer Society Press ,2011:3581-3584.
  • 7Lettner M, Kleber F, Sablamig B, et al. Contrast enhancement in multispectral images by emphasizing text regions[ C ]//Proc of the eighth IAPR workshop on document analysis systems. [ s. 1. ] : [ s. n. ] ,2008:225-231.
  • 8Gorelick L, Boykov Y, Veksler O, et al. Submodularization for binary pairwise energies [ C ]//Proc of IEEE conference on computer vision and pattern recognition. [ s. L ] :IEEE, 2014: 1-8.
  • 9Lowe D G. Distinctive image features from scale- invariant keypoints[J].International Journal of Computer Vision ,2004, 60(2) :91-110.
  • 10Bay H,Tuytelaars T,van Gool L. Surf:speeded up robust fea- tures[C]//Proc of European conference on computer vision. [s.l. ] :[s.n. ] ,2006.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部