期刊文献+

基于状态演化的股市变化趋势可视化预测方法 被引量:5

A Visual Stock Market Trend Forecasting Method Based on State Evolution
下载PDF
导出
摘要 股票市场影响因素众多且关系复杂,对其趋势进行预测十分困难.文中借鉴空间重构技术和可视化数据分析技术表达复杂系统规律和特征的优势,提出了以股市分钟级交易信息为基础的股票市场趋势预测的图形化方法.以沪深两市作为研究对象,选取了开盘价等8个指标作为表征股市系统特征的状态变量,并按一定的周期和递进步长将时序数据绘制成一组股票状态演化图.在对股票状态演化图图像特征与股市趋势变化进行分析的基础上,以图形质心和面积变化率作为股市趋势发生逆转的判断依据,对沪深两地2010年1月~2011年9月股票市场进行了趋势预测实验.结果表明,与其他方法相比,文中方法准确率高、误报率和漏报率低. Stock market trend forecasting is difficult because the stock market is affected by many factors which influence each other. Inspired by phase space reconstruction and visual data mining technique, this paper proposed a visual method to predict stock trend changes based on minute-level data. Research on Shanghai and Shenzhen stock market, eight indexes are selected as stock state variables, and a series of stock state evolution graphs are drawn in terms of cycle and step. After analyzing the correlation between the features of stock state evolution graph and stock price trend changes, variance ratios of centroid and area between two adjacent graphs are taken as criteria to catch stock trend change signals. The experimental results which sourced from 1-minute and 5-minute data of Shanghai composite index and Shenzhen component index from January 2010 to September 2011 showed stock state evolution graphs has higher accuracy, lower rate of false positives and false negatives than other stock forecast method.
作者 胡珉 孙瑜峰
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第2期302-313,共12页 Journal of Computer-Aided Design & Computer Graphics
关键词 沪深股市 可视化 趋势预测 空间重构 图像特征 Shanghai and Shenzhen stock market visualization trend forecasting space reconstruction graph feature
  • 相关文献

参考文献38

  • 1沈冰.股票投资分析[M]{H}重庆:重庆出版社,200294.
  • 2Keynes J M;付继鹏.凯恩斯看盘:双线制胜操作法[M]{H}北京:中国城市出版社,200825-90.
  • 3盛宏昌;唐志武.证券投资学[M]{H}北京:清华大学出版社,2012249-254.
  • 4Nison S;丁圣元.日本蜡烛图技术[M]{H}北京:地震出版社,199810-20.
  • 5高鸿桢.投资决策--技术分析与金融工程[M]{H}北京:中国财政经济出版社,200165-83.
  • 6Prechter R R;Jr;Frost A J;陈 鑫.艾略特波浪理论[M]{H}北京:机械工业出版社,200345-50.
  • 7何造中.解读江恩理论:修订版[M]广州:广州经济出版社,200876-78.
  • 8陈谊,谭桂龙.多维数据的信息可视化方法及应用研究[J].系统仿真学报,2008,20(S1):327-329. 被引量:10
  • 9邱一平.股市密码[M]{H}北京:地震出版社,2002.
  • 10吴诣民,李超英.关于波浪理论若干问题的认识[J].统计与决策,1998(4):44-45. 被引量:2

二级参考文献136

共引文献218

同被引文献31

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部