期刊文献+

(C,α,ρ,d)-V-凸多目标变分问题的混合对偶性

Mixed type duality for multiobjective variational problems involving(C,α,ρ,d)-V-convexity
下载PDF
导出
摘要 给出一类多目标变分问题的混合对偶,使得Wolfe型对偶和Mond-Weir型对偶是其特殊情况,并在(C,α,ρ,d)-V-凸性下建立多目标变分问题关于有效解的混合对偶理论。 A mixed type duality for a class of multiobjective variational problems was first formulated , making Wolfe and Mond-Weir type duals special cases .Under the ( C,α,ρ,d)-V-convexity on the functions invo-lved, we established duality theorems by using the concept of efficiency .
出处 《陕西理工学院学报(自然科学版)》 2014年第1期65-70,共6页 Journal of Shananxi University of Technology:Natural Science Edition
基金 陕西省教育厅专项科研基金资助项目(06JK152) 延安大学2010年研究生教育创新计划项目(YCX201003)
关键词 变分问题 混合对偶性 有效解 ( C α ρ d)-V-凸 variational problem mixed type duality efficient solution ( C,α,ρ,d)-V-convexity
  • 相关文献

参考文献9

  • 1HANSON M A. Bounds for functionally convex optimal control problem[J].{H}Journal of Mathematical Analysis and Applications,1964,(08):84-89.
  • 2陈世国,祁传达.多目标变分问题的混合对偶性[J].数学的实践与认识,2003,33(12):97-102. 被引量:5
  • 3NABAK C,NANDA S. On efficiency and duality for multiobjective variational control problems with (F,ρ)-convexity[J].{H}Journal of Mathematical Analysis and Applications,1997.415-434.
  • 4AHMAD I,SHARMA S. Sufficiency and duality for multiobjective variational control problems with generalized (F,α,ρ,θ)-V-convexity[J].{H}Nonlinear Analysis TMA,2010.2564-2579.
  • 5YUAN De-hui,LIU Xiao-ling,CHINCHULUUN A. Nondifferentiable Minimax Fractional Programming Problems with (C,α,ρ,d)-Convexity[J].{H}Journal of Optimization Theory and Applications,2006,(01):185-199.
  • 6PREDA V. On efficiency and duality for multiobjective programs[J].{H}Journal of Mathematical Analysis and Applications,1992.365-377.
  • 7BHATI D,MEHRA A. Optimality conditions and duality for multiobjective variational problems with generalized B-invexity[J].{H}Journal of Mathematical Analysis and Applications,1999.341-360.
  • 8陈世国,刘家学.具V-不变凸性的一类多目标控制问题的混合对偶性[J].数学杂志,2010,30(2):338-344. 被引量:3
  • 9陈世国,刘家学.具广义V-不变凸多目标变分的混合对偶性[J].大学数学,2011,27(1):101-105. 被引量:1

二级参考文献17

  • 1Mond B, Smart I. Dality and sufficiency cotrol problems with invexity[J]. J. Math. Anal. Appl., 1988, 136: 325-333.
  • 2Mishra S K, Mukherjee R N. Multiobjective control problem with V-invexity [J]. J. Math. Anal. Appl., 1999, 235:1-12.
  • 3Bhatia D, Kumar. Multiobjective control problems with generalized invexity[J]. J. Math. Anal. Appl., 1995, 189: 676-692.
  • 4Liang Zhian, Ye Qingkai. Duality for a class of multiobjective control problems with generalized invexity[J]. J. Math. Anal. Appl., 2001, 256: 446-461.
  • 5Ahmad I, Gulati T R. Mixed duality for multiobjective variaitional problems with generalized cinvexity[J]. J. Math. Anal. Appl., 2005, 306: 669-683.
  • 6Xu Z C. Mixed type duality in multiobjective programming problems[J]. J. Math. Anal. Appl., 1996, 198: 621-635.
  • 7Mond B, Hanson M. Dality for cotrol problems[J]. SIAM. J. Control, 1968, 6(1): 114-120.
  • 8Mishra S K and Mukherjee R N. On efficiency and duality for multiobjective variational problems[J]. J. Math. Anal. Appl, 1994, 187(1):40--54.
  • 9Bhatia D and Mehra A. Optimality conditions and duality t'or multiobjective variational problems with generalized Binvexity[J]. J. Math. Anal. Appl, 1999, 234(1):341--360.
  • 10Mond B and Husain I. Sufficient optimality critera and duality for variational problems with generalized invexity [J]. J. Austral. Math. Soc. SerB, 1989: 31(1): 108--121.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部