期刊文献+

高羊茅FaChit1基因启动子的功能分析 被引量:1

Functional Deletion Analysis of FaChit1 Promoter Region from Festuca arundinacea
下载PDF
导出
摘要 用含有不同长度FaChit1基因启动子区域与GUS基因融合构建植物表达载体pFaChit1P-Ⅰ、pFaChit1P-Ⅱ以及pFaChit1P-Ⅲ并分别对烟草进行转化,经真菌激发子、干旱、机械损伤以及乙烯等多种胁迫处理后测定GUS活性。启动子缺失分析实验结果显示,真菌激发子对FaChit1基因启动子所介导的GUS诱导表达效果最强,而机械损伤只能微弱地诱导GUS基因表达;FaChit1基因启动子-651 bp以内的序列均能介导GUS基因的诱导表达,同时-935 bp与-233 bp之间的区域是该启动子响应真菌激发子、乙烯以及机械损伤胁迫所必需的。表明FaChit1启动子是一个多胁迫诱导型启动子。 Activation of different promoter fragments by fungal elicitors, dehydration, mechanical wounding, and ethylene were analyzed in transgenic tobacco using transcriptional fusions of FaChitl 5' upstream sequences to the GUS reporter gene (promoter-GUS expression vectors were designated as pFaChitlP-I, pFaChitlP-II and pFaChitlP-III, respectively). Analysis of promoter deletion showed that the FaChitl promoter conferred the strongest induction of GUS activity in response to treatment with fungal elicitors, but the least induction in response to mechanical wounding; GUS activity could be induced in response to four stress treatments in leaves containing the 651 bp upstream of the FaChitl start codon, and the fragment between 935 bp and 233 bp upstream of the FaChitl start codon was sufficient to direct gene expression in response to fungal elicitors, ethylene, dehydration, and mechanical wounding. Results indicated that the FaChitl promoter was a multiple stress inducible promoter.
出处 《植物科学学报》 CAS CSCD 北大核心 2013年第6期562-569,共8页 Plant Science Journal
基金 国家自然科学基金(31170281) 陕西省自然科学基金(2011K-16-02-01) 陕西省教育厅自然科学专项基金(11JK0610) 安康学院高层次人才专项基金(AYQDZR200926)
关键词 高羊茅 FaChit1基因 启动子缺失分析 Tall fescue (Festuca arundinacea) FaChitl gene Promoter deletion analysis
  • 相关文献

参考文献22

  • 1Chen W Q,Provart N J,Glazebrook J. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J].{H}PLANT CELL,2002,(3):559-574.
  • 2Shinshi H,Usami S,Ohme-Takagi M. Identification of an ethylene responsive region in the promoter of a tobacco Class Ⅰ chitinase gene[J].{H}Plant Molecular Biology,1995.923-932.
  • 3Hong J K,Hwang B K. Promoter activation of pepper class Ⅱ basic chitinase gene,CAChi2,and enhanced bacterial disease resistance and osmotic stress tolerance in the CAChi2-overexpressing Arabidopsis[J].{H}PLANTA,2006.433-448.
  • 4Rushton P J,Torres J T,Parniske M. Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J].{H}EMBO Journal,1996.5690-5700.
  • 5Yang P,Wang Z,Fan B. A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class Ⅰ chitinase gene[J].{H}Plant Journal,1999.141-149.
  • 6Yu D Q,Chen C H,Chen Z X. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].{H}PLANT CELL,2001.1527-1539.
  • 7Menkens A E,Schindler U,Cashmore A R. The G-box:a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins[J].Trends Biochem,1995.506-510.
  • 8Curr S L,Rushton P J. Engineering plants with increased disease resistance:how are we going to express it[J].? Trends Biotech,2005,(6):283-290.
  • 9Sambrook J,Russell D W. Molecular Cloning:A Laboratory Manual[M].New York:Cold Spring Harbor Laboratory Press,2001.492-499.
  • 10Jefferson R A,Kavanagh T A,Bevan M W. GUS fusions:β-glucouronidase as a sensitive and versatile gene fusion marker in higher plants[J].{H}EMBO Journal,1987.3901-3907.

二级参考文献5

共引文献5

同被引文献25

  • 1Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by ar- tificial microRNAs in Arabidopsis [ J ]. Plant Cell, 2006, 18(5). 1121-1133.
  • 2Warthmann N, Chert H, Ossowski S, Weigel D, Herve P. Highly specific gene silencing by artificial miRNAs in rice[J]. PLoS One, 2008, 3(3)- e 1829.
  • 3Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W. Specific gene silencing by artificial mi- croRNAs in Physcomitrella patens; An alternative to targeted gene knockouts [ J ]. Plant Physiol, 2008, 148(2) ~ 684-693.
  • 4Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D. Highly specific gene silencing by artificial microR- NAs in the unicellular alga Chlamydomonas rein- hardtii [J]. Plant J, 2009, 58(1). 165-174.
  • 5Toppino L, Kooiker M, Lindner M, Dreni L, Rotino GL, Kater MM. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA- mediated silencing of general transcription factor genes[ J]. Plant Biotechnol J, 2011, 9(6). 684- 692.
  • 6Ai T, Zhang L, Gao Z, Zhu C X, Guo X. Highly ef- ficient virus resistance mediated by artificial mi-croRNAs that target the suppressor of PVX and PVY in plants[J~. Plant Biol, 2011, 13(2) ~ 304- 316.
  • 7Altpeter F, Vasil V, Srivastava V, St6ger E, Vasil I K. Accelerated production of transgenic wheat ( Triticum aestivum L. ) plants [ J ]. Plant Cell Rep, 1996, 16(1-2): 12-17.
  • 8Jelly NS, Valat L, Walter B, Maillot P. Transient ex- pression assays in grapevine, a step towards ge- netic improvement [ J ]. Plant Biotechnol J, 2014, 12(9) : 1231-1245.
  • 9Ahn YK, Yoon MK, Jeon JS. Development of an ef- ficient Agrobacterium-mediated transformation sys- tem and production of herbicide-resistant trans- genic plants in garlic (A//ium sativum L. ) [ J ]. Mol Cells, 2013, 36(2). 158-162.
  • 10Bubier J, SchlAppi M. Cold induction of EARLI1, a putative Arabidopsis lipid transfer protein, is light and calcium dependent [ J ~. Plant Cell Environ, 2004, 27(7) : 929-936.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部