期刊文献+

整合蛋白质作用网络结构和序列信息预测药物靶蛋白

Prediction of Drug-Target Proteins by Integrating Protein-Protein Interaction Network and Protein Sequence Similarity
原文传递
导出
摘要 通过整合蛋白质作用网络拓扑结构信息和蛋白质序列信息,对蛋白质作用网络进行聚类,预测药物靶蛋白。分析了网络密度、节点隶属度及蛋白质相对于聚类团的平均相似度,将蛋白质作用网络分割成具有一定生物学特性的子网络,利用维尔克松秩和检验判断聚类团是药物靶点团还是非靶点团。实验结果表明,与仅利用蛋白质作用网络拓扑结构信息的聚类算法相比,该算法预测精度提高17.4%,能够有效预测药物靶蛋白,推测潜在的药物-靶蛋白作用。 In this paper, the authors proposed a novel clustering method to predict drug-target proteins by integrating protein-protein interaction network and protein sequence similarity. By measuring the clustering density, the membership degree and the sequence similarity between a node and a cluster, protein-protein interaction network was divided into clusters with certain molecular biological function. By employing the Wilcoxon rank-sum test, each cluster was judged whether it was a drug-target cluster or a non-target protein cluster. The results showed that the prediction accuracy was 17.4% higher than that of another clustering algorithm without integrating the protein sequence similarity and the proposed method could predict target proteins and infer the potential drug-target interactions.
出处 《生物物理学报》 CAS CSCD 北大核心 2013年第9期695-705,共11页 Acta Biophysica Sinica
基金 国家自然科学基金项目(61170134 61135001)~~
关键词 药物靶蛋白 蛋白质作用网络 序列相似度 融合 聚类 Drug-target protein Protein-protein interaction network Sequence similarity Integrating Clustering
  • 相关文献

参考文献22

  • 1Hanzlik RP, Koen YM, Theertham B, Dong Y, Fang J. The reactive metabolite target protein database (TPDB)-A web-accessible resource. BMC Bioinformatics, 2007, 8(1): 95.
  • 2李端, 殷明. 药理学(第六版). 北京: 人民卫生出版社, 2006: 18-20.
  • 3Haggarty SJ, Koeller KM, Wong JC, Butcher RA, Schreiber SL. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem Biol, 2003, 10(5): 383-396.
  • 4Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol, 2007, 25(1): 71-75.
  • 5Jacob L, Vert JP. Protein-ligand interaction prediction: An improved chemogenomics approach. Bioinformatics, 2008, 24(19): 2149-2156.
  • 6Klipp E, Wade RC, Kummer U. Biochemical network-based drug-target prediction. Curr Opin Biotechnol, 2010, 21(4): 511-516.
  • 7Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol, 2000, 18(12): 1257-1261.
  • 8Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhag J, Sun S, Ling L, Zhang N, Li G, Chen R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res, 2003, 31(9): 2443-2450.
  • 9Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol, 2007, 3(1): 88.
  • 10Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol, 2007, 25(10): 1119-1126.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部