期刊文献+

液态挤压工艺ANN/GA建模与优化研究 被引量:4

An ANN/GA(Artificial Neural Network/Genetic Algorithm) for Modeling and Optimizing of Liquid Metal Extrusion Process
下载PDF
导出
摘要 利用人工神经网络方法 (ANN)建立了工艺系统模型 ,用遗传算法 (GA)对过程参数进行优化 ,实验结果与预测值吻合良好 ,为预测和控制该工艺成形质量提供了行之有效的手段。 Forming quality of liquid metal extrusion process has been difficult to ensure. We resolved this difficult problem by proposing modeling with artificial neural network (ANN) and optimization of process parameters with genetic algorithm (GA). Fig.1 shows the neural network model that can make the five process parameters selected compatible: (1) pouring temperature (T_1), (2) die temperature (T_2), (3) pressing velocity (v), (4) delaying period before applying pressure (t), (5) deforming force (F). Then we optimized the five parameters with GA and obtained T_1=716℃, T_2=250℃, t=30 s, v≈2.6×10 -3 m/s, F_ min=86.6 MPa for a liquid AlCuSiMg alloy extrusion. These predicted optimal values agreed well with test results.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2001年第1期114-117,共4页 Journal of Northwestern Polytechnical University
基金 航空基础科学基金! (99G5 30 87)资助
关键词 液态挤压 神经网络 遗传算法 工艺系统模型 liquid metal extrusion, neural network (NN), genetic algorithm (GA)
  • 相关文献

参考文献4

  • 1Qi Lehua,Materials Manufacturing Processes,1998年,13卷,3期,405页
  • 2Chiang Junghsien,Neural Networks,1998年,11卷,337页
  • 3Chung J S,J Mater Process Technol,1997年,72卷,69页
  • 4Li Hejun,J Mater Process Technol,1995年,55卷,1期,19页

同被引文献37

  • 1柴东朗,刘静华,沈亚鹏.模糊分析方法在复相材料组织及性能设计上的应用[J].西安交通大学学报,1997,31(3):114-119. 被引量:2
  • 2Han S S, Ceiler M, Bidstrup S A, et al. Modeling the properties of PECVD silicon dioxide films using optimized back-propagation neural networks [ J ]. IEEE Transactions on Packaging, and Manufacturing Technology, Part A, 1994, 17(2):174 -182.
  • 3Ghosh S, Dutta P K, Bose D N. Neural network modeling of PECVD silicon nitride films [ J ]. Materials Science in Semiconductor Processing, 1999, 2 ( 1 ) : 1 - 11.
  • 4Liau L C K, Huang C J, Chen C C, ct al. Process modeling and optimization of PECVD silicon nitride coated on silicon solar cell using neural networks[ J]. Solar Energy Materials & Solar Cells. 2002, 71 : 169 -179.
  • 5Chen P C L, Cao Y, LeClair S R. Materials structure-property prediction using a self-architecting netlral network[J]. Journal of Alloys and Compounds, 1998, 279:30 - 38.
  • 6Qian H C, Xia B, Li S Z, et al, Fuzzy neural network modeling of material properties [ J ]. Journal of Materials Processing Technology, 2002, 122 : 196 - 200.
  • 7Arafeh L, Singh H, Putatunda S K. A neuro fuzzy logic approachto material processing[ J]. IEEE Transactions on Systems, Man, and Cybernetics--Part C: Applications and Reviews. 1999, 29(3) : 362-370.
  • 8Song R G, Zhang Q Z. Heat treatment optimization for 7175 aluminum alloy by genetic algorithm[J]. Materials Science and Engineering C, 2001, 17 : 133 - 137.
  • 9Kim J, Moon Y, Zeigler B P. Designing fuzzy net controllers using genetic algorithms [J]. IEEE Control Systems Magazine, 1995, 15(3): 66 -72.
  • 10Baraldi A, Blonda P. A survey of fuzzy clustering algorithms for pattern recognition. 1 [ J ]. IEEE Transactions on Systems. Man and Cybernetics, Part B, 1999, 29(6) :778-785.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部