期刊文献+

Microstructure and mechanical properties of cast and heat treated Ti-6.55Al-3.41Mo-1.77Zr alloy

铸态和热处理态Ti-6.55Al-3.41Mo-1.77Zr合金微观组织和力学性能(英文)
下载PDF
导出
摘要 α+βtitanium alloy with a composition of Ti-6.55Al-3.41Mo-1.77Zr (mass fraction,%) was cast into bars in a graphite mould using vacuum induction skull melting furnace (ISM). The cast bars were hot swaged at 700 °C and then heat treated by two different regimes which resulted in fine and coarse lamella structures, respectively. The grain size of the as-cast structure was estimated to be 660 μm and the swaged samples obtained a very fine grain size in the range of 50 μm. The overall best combination of hardness, tensile properties, and wear resistance of theα+βtitanium alloy was achieved by heat treating the samples at 1050 °C for getting fine lamellar structure. The maximum compression strength was reported for the heat treated samples at 800 °C with coarse lamella structure. The minimum wear rate was reported for the heat treated samples with fine lamellar structure and the maximum wear rate was obtained for as-cast samples due to its coarse and heterogeneity microstructure. 采用真空感应熔炼炉将成分为Ti-6.55Al-3.41Mo-1.77Zr(质量分数)的α+β钛合金在石墨模具中浇铸成棒材。铸态棒材在700°C下热锻后,通过两种不同的热处理后,分别得到细小和粗大的层片状结构。结果表明:铸态组织的晶粒尺寸约为660μm,而锻造后样品具有细小的晶粒尺寸,约为50μm。在1050°C热处理后的α+β钛合金具有细小的层片状结构,得到最佳的硬度、拉伸性能和耐磨性。在800°C热处理后的α+β钛合金具有粗大的层片状结构,具有最大的抗压强度。具有细小层片状结构的热处理态α+β钛合金的磨损率较小,而铸态α+β钛合金由于具有粗大和不均匀的微观组织,因此磨损率较大。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3517-3524,共8页 中国有色金属学报(英文版)
关键词 α+βTi-alloy CASTING solution treatment microstructure mechanical properties α+β钛合金 铸态 固溶处理 微观组织 力学性能
  • 相关文献

参考文献2

二级参考文献49

  • 1G. Liitjering: Mater. Sci. Eng. A, 1998, 243, 32.
  • 2T. Ahmed and H.J. Rack: Mater. Sci. Eng. A, 1998, 243,206.
  • 3N. Stefansson and S.L. Semiatin: Metall. Mater. Trans. A, 2003, 34, 691.
  • 4S.L. Semiatin, S.L. Knisley, P.N Fagin, F. Zhang, D.R. Barker: Metall. Mater. Trans. A, 2003, 34, 2377.
  • 5A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff and B. Yamrom: Effect of Microstructure on Dwell Fatigue Behavior of Ti-6242, in P.A. Blenkin?shop, W.J. Evans, H.M. Flower (eds.), Titanium'95 Science and Technology, London, The Institute of Ma?terials, 1996, 1116.
  • 6K. Le Biavant, S. Pommier and C. Prioul: Fatigue Freet. Eng. Mater. Struct., 2002, 25, &a7.
  • 7L. Germain, N. Gey, M. Humbert, P. Bocher and M. Jahazi: Acta Mater., 2005, 53, 3535.
  • 8L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi and P. Bocher: Acta Mater., 2008, 56, 4298.
  • 9L. Toubal, P. Bocher, A. Moreau and D. Levesque: Metall. Mater. Trans. A, 2010, 41, 744.
  • 10M.R. Bache, M. Cope, H.M. Davies, W.J. Evans and G. Harrison: Int. J. Fatigue, 1997, 19, 83.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部