期刊文献+

搅拌摩擦焊工艺参数对2024-T351铝合金搭接焊接头成形质量和力学性能的影响(英文) 被引量:7

Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints
下载PDF
导出
摘要 研究搅拌摩擦焊时R/v比对2024-T351铝合金焊接质量的影响。搅拌摩擦焊时搅拌针的旋转速度设定为750、950和1180 r/min,焊接速度在73~190 mm/min内变化,对应的R/v比在5.00~10.27内。采用各种无损(外观检测、X射线检测)和有损(金相观察、拉伸实验和硬度测量)检测手段对焊接试样进行分析。在所有的试样中,搅拌摩擦焊中各种典型的区域都有存在,不同的区域其晶粒尺寸不同。接头的拉伸性能为基材的52.2%~82.3%。在R/v比为8.06,10.17和10.27时焊接质量最佳。其原因是在最佳搅拌速度下,材料围绕搅拌针充分流动,从而能够填充其中产生的空隙,阻止空洞的生成。结果还表明,R/v 比对接头的硬度分布、洋葱样形状、裂纹的萌生和扩展都有影响。 The influence of R/v ratio on joint quality in 2024-T351 aluminum alloy was studied. Specimens were subjected to friction stir welding with the rotation rates of 750, 950 and 1180 r/min and welding speed between 73 and 190 mm/min, providing R/v ratio between 5.00 and 10.27. The welded joints were tested by means of both non-destructive (visual, penetrant and X-ray inspection) and destructive (metallographic, tension and hardness) testing. In all specimens typical zones are revealed, with corresponding differences in grain size. Tensile efficiency of the joints obtained is in the range of 52.2%to 82.3%. The results show that the best quality is obtained at R/v ratio of 8.06, 10.17 and 10.27. This behavior is attributed to the assumption that the material flows around the pin with an optimal speed, i.e. sufficient amount of material is available to fill the gap and prevent tunnel formation. R/v ratio also showed influence on hardness distribution, onion features and crack initiation/propagation zones.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3525-3539,共15页 中国有色金属学报(英文版)
基金 Ministry of Education and Science of Serbia for financial support through Project TR34018
关键词 2024铝合金 搅拌摩擦焊 焊接参数 热量输入 焊接质量 Al 2024 alloy friction stir welding welding parameters heat input weld quality
  • 相关文献

参考文献61

  • 1LEFEBVRE F,GANGULY S,SINCLAIR I. Micromechanical aspects of fatigue in a MIG welded aluminum airframe alloy:Part 1. Microstructural characterization[J].Materials Science and Engineering A,2005.338-345.
  • 2OWEN R A,PRESTON R V,WITHERS P J,SHERCLIFF H R WEBSTER P J. Neutron and synchrotron measurements of residual strain in TIG welded aluminum alloy 2024[J].Materials Science and Engineering A,2003.159-167.
  • 3THOMAS W M;NICHOLAS E D;NEEDHAM J C;MURCH M G; TEMPLESMITH P; DAWES C J.查看详情[P],GB Patent Application No912597881991.
  • 4PIRES J N,LOUREIRO A,BOLMSJO G. Welding robots[M].Welding Technology,2006.27-71.
  • 5VILA?A P,THOMAS W. Friction stir welding technology[J].Adv Struct Mater,2012.85-124.
  • 6MISHRA R S,MA Z Y. Friction stir welding and processing[J].{H}MATERIALS SCIENCE & ENGINEERING R-REPORTS,2005.1-78.
  • 7MISHRA R S,MAHONEY M W. Friction stir welding and processing[M].Materials Park,Ohio,USA:ASM International,2007.
  • 8POSADA M,NGUYEN J P,FORREST D R,DELOACH J J. Friction stir welding advanced joining technology[J].Amptiac Quarterly,2003.13-20.
  • 9GRUJICIC M,ARAKERE G,PANDURANGAN B,HARIHARAN A YEN C F CHEESEMAN B A. Development of a robust and cost-effective friction stir welding process for use in advanced military vehicles[J].{H}Journal of Materials Engineering and Performance,2011,(01):11-23.
  • 10ERICSSON M,SANDSTROM R. Influence of welding speed on the fatigue of friction stir welds,and comparison with MIG and TIG[J].{H}International Journal of Fatigue,2003.1379-1387.

同被引文献91

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部