期刊文献+

单侧感音神经性耳聋患者静息态fMRI观察 被引量:2

Resting-state functional MRI research of the auditory cortex in patients with long-term unilateral hearing loss
原文传递
导出
摘要 目的用静息态fMRI观察单侧感音神经性耳聋患者静息状态下脑功能连接网络的变化。方法入组患者为2011年2月至2012年4月通过广告募集或来自于东南大学附属中大医院耳鼻喉科。耳聋组29例(左耳聋15例,右耳聋14例),患耳聋均为70dBHL以上;匹配的健康对照组左侧15例,右侧14例。用功能连接种子相关方法,观察健康人与耳聋患者的听觉网络的功能连接脑图,并比较其差异。结果耳聋患者听觉皮质的正向连接网络均较健康人变弱。以患侧听觉皮质为种子点时,左、右侧耳聋患者听觉皮质L1分别为30.14,-31.25;而以健侧听觉皮质为种子点时,左、右侧耳聋患者听觉皮质u分别为0.1,19.37。组间分析显示耳聋患者比健康组可见更多激活的脑区,左耳聋患者主要为额叶(双侧中央前回、左侧额中回及左侧额上回)、顶叶(楔前叶)及后扣带回,右耳聋患者比健康人多的脑区位于右侧尾状核。结论静息状态下健侧听觉皮质与患侧听皮质及周围相关脑区连接下降,可能是大脑适应性功能重组的表现。 Objective To evaluate functional connectivity in patients with unilateral sensorineural hearing loss(USNHL) using resting-state fMRI. Methods Functional connectivity MRI were employed in 29 patients with SNHL ( 15 left, 14 right) with averaged hearing level above 70 dB HL for the deaf ear, and matched 15 and 14 normal hearing subjects, respectively, were recruited. Functional connectivity mappings between the SNHL patients and normal hearing subjects were evaluated and the differences were contrasted. Results The positive functional connectivity of auditory cortex with whole brain in USNHL patients is weaker than that in normal subjects both in volume and intensity. Using the affected side A I as a seed, left and right Laterality index (LI) of auditory cortex was 30. 14, - 31.25, respectively. Using the healthy side as a seed, the LI of auditory cortex was 0. 1,19. 37, respectively. Compared to normal subjects, increased activation in bilateral precentral gyrus, left middle frontal gyrus, left superior frontal gyrus and posterior cingulate cortex/precuneus were found in left USNHL patients. Contrasted with normal subjects, no significant difference was found between the normal subjects and right SNHL patients, except the right caudate nucleus using left A I as a seed. Conclusion The reduced functional connectivity among the affected side and healthy side auditory cortex as well as associated auditory cortex may suggest a result of functional reorganization adaptive to the SNHL.
出处 《中华医学杂志》 CAS CSCD 北大核心 2014年第3期167-170,共4页 National Medical Journal of China
基金 国家自然科学基金(30970808)
关键词 磁共振成像 听觉丧失 感音神经性 听觉皮质 Magnetic resonance imaging Hearing loss, sensorineural Auditory cortex
  • 相关文献

参考文献10

二级参考文献95

  • 1国华.用手表达的语言——从语言学角度认识手语[J].中国特殊教育,2005(9):50-54. 被引量:16
  • 2夏爽,祁吉,尹建忠,薛永刚.单侧感音神经性耳聋病人听觉中枢的fMRI研究[J].中国医学影像技术,2005,21(9):1312-1316. 被引量:16
  • 3突发性聋的诊断和治疗指南(2005年,济南)[J].中华耳鼻咽喉头颈外科杂志,2006,41(8):569-569. 被引量:853
  • 4Petitto LA, Zatorre R J, Gauna K, et al. Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proc Natl Acad Sci USA, 2000,97(25) :13961-13966.
  • 5MacSweeney M, Woll B. Neural systems underlying British sign language and audio-visual English processing in native users. Brain, 2002,125(7) : 117-129.
  • 6Penhune VB, Cismaru R, Dorsaint-Pierre R, et al. The morphometry of auditory cortex in the congenitally deaf measured using MRI. Neuroimage, 2003,20(2) : 1215-1225.
  • 7Emmorey K, Allen JS, Bruss J, et al. A morphometric analysis of auditory brain regions in congenitally deaf adults. Proc Natl Acad Sci USA, 2003,100(17) :10049-10054.
  • 8Shibata DK. Differences in brain structure in deaf persons on MR imaging studied with voxel-based morphometry. AJNR Am J Neu roradiol, 2007,28(2) :243-249.
  • 9Bellugi U, Poizner H, Klima ES, et al. Brain organization for language: clues from sign aphasia. Hum Neurobiol, 1983,2(3) : 155- 170.
  • 10Kara A, Hakan Ozturk A, Kurtoglu Z, et al. Morphometric comparison of the human corpus callosum in deaf and hearing subjects: an MRI study. J Neuroradiol, 2006,33(3):158-163.

共引文献16

同被引文献19

  • 1余文发,王萍.老年感音神经性耳聋50例[J].中国老年学杂志,2014,34(4):1071-1072. 被引量:6
  • 2Chilosi AM, Comparini A, Scusa MF, et al. Neurodevelopmental disorders ill children with severe to profound sensorineural hearing loss: a clinical studyJ J]. Dev Med Child Neurol ,2010,52(9): 856-862.
  • 3Wig CS, Schlaggar BL, Petersen SE. Concepts and principles in the analysis of brain networks[J]. Ann N Y Acad Sci, 2011,1224: 126-146.
  • 4Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nat Rev Neurosci ,2009,10(3) : 186-198.
  • 5Tzourio-Mazoyer N, Landeau B, Papathanassiou 0, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J] . Neuroimage ,2002,15 ( 1 ) :273-289.
  • 6Jiang C,Wen X,Qiu Y,et al. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRJ study[J]. PLuS One,2013,8(12) :e82715.
  • 7Yang M, Chen HJ, Liu B, et al. Brain structural and functional alterations in patients with unilateral hearing loss[J]. Hear Res, 2014,316 :37-43.
  • 8Pascual-Leone A, Amedi A, Fregni F, et al. The plastic human brain cortex[J]. Annu Rev Neurosci ,2005 ,28 :377 -401.
  • 9Agosta F, Galantucci S, Valsasina P, et al. Disrupted brain connecLome in semantic variant of primary progressive aphasia[J]. Neurobiol Aging,2014,35( II) :2646-2655.
  • 10ltahashi T, Yamada T, Watanabe H, et al. Altered network topologies and hub organization in adults with autism: a restingstate fMRI study[J]. PLuS One,2014 ,9( 4) :e94115.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部