期刊文献+

NOTES ON THE RESCALED SASAKI TYPE METRIC ON THE COTANGENT BUNDLE

NOTES ON THE RESCALED SASAKI TYPE METRIC ON THE COTANGENT BUNDLE
下载PDF
导出
摘要 Let (M, g) be an n-dimensional Riemannian manifold and T*M be its cotan-gent bundle equipped with the rescaled Sasaki type metric. In this paper, we firstly study the paraholomorphy property of the rescaled Sasaki type metric by using some compati-ble paracomplex structures on T*M. Second, we construct locally decomposable Golden Riemannian structures on T*M . Finally we investigate curvature properties of T*M . Let (M, g) be an n-dimensional Riemannian manifold and T*M be its cotan-gent bundle equipped with the rescaled Sasaki type metric. In this paper, we firstly study the paraholomorphy property of the rescaled Sasaki type metric by using some compati-ble paracomplex structures on T*M. Second, we construct locally decomposable Golden Riemannian structures on T*M . Finally we investigate curvature properties of T*M .
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期162-174,共13页 数学物理学报(B辑英文版)
关键词 almost paracomplex structure cotangent bundle Golden structure paraholomorphic tensor field Riemannian curvature tensor scalar curvature almost paracomplex structure cotangent bundle Golden structure paraholomorphic tensor field Riemannian curvature tensor scalar curvature
  • 相关文献

参考文献36

  • 1Akbulut S, Ozdemir M, Salimov A A. Diagonal lift in the cotangent bundle and its applications. TUrkish J Math, 2001, 25(4): 491-502.
  • 2Crasmareanu M, Hretcanu C. Golden differential geometry. Chaos Solitons Fractals, 2008, 38(5): 1229- 1238.
  • 3Cruceanu V, Fortuny P, Gadea P M. A survey on paracomplex Geometry. Rocky Mountain J Math, 1995, 26: 83-115.
  • 4Cruceanu V. Une classe de structures geome triques sur Ie fibre cotangent. Tensor (NS), 1993, 53: 196-201.
  • 5Druta L S. Classes of general natural almost anti-Hermitian structures on the cotangent bundles. Mediterr J Math, 2011, 8(2): 161-179.
  • 6Druta L S. Cotangent bundles with general natural Kahler structures of quasi-constant holomorphic sec?tional curvatures/ /Differential Geometry. Hackensack, NJ: World Sci Publ, 2009: 311-315.
  • 7Druta L S. Kahler-Einstein structures of general natural lifted type on the cotangent bundles. Balkan J Geom Appl, 2009, 14(1): 30-39.
  • 8Druta L S. Cotangent bundles with general natural Kahler structures. Rev Roumaine Math Pures Appl, 2009, 54(1): 13-23.
  • 9Gezer A, Cengiz N, Salimov A A. On integrability of Golden Riemannian structures. TUrk J Math, 2013, 37(4): 693-703.
  • 10Goldberg S I, Yano K. Polynomial structures on manifolds. Kodai Math Sem Rep, 1970, 22: 199-218.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部