期刊文献+

A NOTE ON n-PERINORMAL OPERATORS 被引量:1

A NOTE ON n-PERINORMAL OPERATORS
下载PDF
导出
摘要 The study of operators satisfying σja(T ) = σa(T ) is of significant interest. Does σja(T ) = σa(T ) for n-perinormal operator T ∈ B(H)? This question was raised by Mecheri and Braha [Oper. Matrices 6 (2012), 725-734]. In the note we construct a counterexample to this question and obtain the following result: if T is a n-perinormal operator in B(H), then σja(T )/{0} = σa(T )/{0}. We also consider tensor product of n-perinormal operators. The study of operators satisfying σja(T ) = σa(T ) is of significant interest. Does σja(T ) = σa(T ) for n-perinormal operator T ∈ B(H)? This question was raised by Mecheri and Braha [Oper. Matrices 6 (2012), 725-734]. In the note we construct a counterexample to this question and obtain the following result: if T is a n-perinormal operator in B(H), then σja(T )/{0} = σa(T )/{0}. We also consider tensor product of n-perinormal operators.
作者 左红亮 左飞
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期194-198,共5页 数学物理学报(B辑英文版)
基金 supported by NNSF(11226185 11201126) the Basic Science and Technological Frontier Project of Henan Province(132300410261)
关键词 n-perinormal operators approximate point spectrum joint approximatepoint spectrum tensor product n-perinormal operators approximate point spectrum joint approximatepoint spectrum tensor product
  • 相关文献

参考文献1

二级参考文献8

  • 1Bavula V. Krull, Gelfand-Kirillov and filter dimensions of simple affine algebras. J Algebra, 1998, 206(1): 33-39.
  • 2Borel A, et al. Algebraic D-modules. Perspectives in Mathematics 2. London-New York: Academic Press, 1987.
  • 3Krause G, Lenagan T. Growth of algebras and Gelfand-Kirillov dimension(Revised Edition)//Graduate Studies in Mathematics, Vol 22. Providence, RI: American Mathematical Society, 2000.
  • 4Coutinho S. A primer of algebraic :D-modules. Cambridge University Press, 1995.
  • 5Cox D, Little J, O'shea D. Ideals, varieties, and algorithms. Springer-Verlag, 1992.
  • 6Li H S, Wu Y H. Filtered-graded transfer of Grobner basis computation in solvable polynomial algebras Comm Alg, 2000, 28(1): 15-32.
  • 7Chen L, Li H S. Multiplicity computation of modules over k[x1,..., Xn] and an application to Weyl algebras Comm Alg, 2000, 28(10): 4901-4917.
  • 8Lang S. Algebra. New York: SDringer-Verlag. 2002.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部