期刊文献+

B_4C对MGH956合金TIG焊接头性能的影响 被引量:5

Effect of B_4C on Mechanical Property of TIG Weld Joint of an ODS High Temperature Alloy MGH956
原文传递
导出
摘要 采用TIG焊对MGH956合金进行原位合金化焊接,研究了B4C对焊缝显微组织和力学性能的影响。结果表明,填加B4C后焊缝以等轴晶为主,晶粒细小均匀,没有明显的氧化物聚集现象,晶内和晶界都有增强相;随着B4C含量的提高焊缝组织进一步细化,增强相几乎全部集中在晶界上,晶内颗粒状增强相消失。随着B4C含量的提高焊缝的塑韧性降低,抗拉强度先增大后降低。填加0.25%B4C时焊缝抗拉强度最高,达到630 MPa,为母材强度的87.5%,断口呈脆性断裂。 The 1.3 mm thick plate of ODS high temperature alloy MGH956 was TIG welded with fill- ers containing different B4C (0, 0.25 and 0.5 mass %), then the effect of B4C content on the microstructure and mechanical properties of the weld joints was investigated. The results show that the microstructure of the weld metal with B,C exhibits mainly equiaxed grains, which are fine and uniform, without significant agglomeration of oxide dispersoids, while the strengthening particulates of the alloy distribute in both grains and grain boundaries. The microstructure of weld joint was finer as the filler with B4C content in a range from 0.25 to 0.5 mass%. However nearly almost the strengthening particulates of the alloy concen- trate in the grain boundaries but disappear in the grains for the weld joints by filler with 0.5% B4C. The ten- sile strength of the weld joints firstly increases and then decreases when the B4C content of the fillers ranged from 0% to 0.5 mass%, but their toughness decreases with the induce of B4C. The tensile strength of the weld joint with filler material containing 0.25% B4C is the highest i.e. 630 MPa, reaching 87.5% of the parent material. The fractured surface exhibited characteristics of brittle fracture.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2014年第2期93-99,共7页 Chinese Journal of Materials Research
基金 国家自然科学基金51075191 江苏高校优势学科建设工程资助项目 江苏省高校博士创新计划cxlx12_0638资助项目~~
关键词 金属材料 MGH956合金 TIG 原位合金化 B4C metallic materials, MGH956 alloy, TIG, in-situ alloying, B4C
  • 相关文献

参考文献6

二级参考文献50

共引文献68

同被引文献117

  • 1李慧中,郭菲菲,梁霄鹏,李洲.焊丝成分对2519铝合金焊缝组织与性能的影响[J].焊接学报,2008,29(4):77-81. 被引量:20
  • 2崔海超,左秀荣.Ti、Sc、Zr对铝合金微观组织的影响[J].铸造技术,2007,28(1):64-68. 被引量:12
  • 3Hall E O. Proc Phys Soc, 1951; 64B: 747.
  • 4Petch N J. J Iron Steel Inst, 1953; 174: 25.
  • 5Iwahashi Y, Wang J T, Horita Z, Nemoto M, Langdon T G. Scr Mater, 1996; 35: 143.
  • 6Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T. JOM, 2006; 58(4): 33.
  • 7Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893.
  • 8Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G. Scr Mater, 1998; 39: 1221.
  • 9Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 788.
  • 10Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge: Cambridge University Press, 2009: 1.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部