期刊文献+

不同频率振动应力对破骨细胞特异性基因及骨保护素/核因子κB受体活化因子配体表达的影响 被引量:5

Effects of different frequency of vibration strain on the expressions of osteoclast-specific genes and osteoprotegerin/receptor of activator for nuclear factor-κB ligand in osteoclast
下载PDF
导出
摘要 目的:观察不同频率振动应力对RAW264.7细胞体外诱导分化过程中,其特异性基因及骨保护素(OPG)/核因子κB受体活化因子配体(RANKL)表达的影响。方法:应用复合振动仪,将不同频段3—10Hz、15—35Hz、35—45Hz、50—70Hz和70—90Hz振动应变分别作用于体外诱导分化的RAW264.7细胞,分别为B、C、D、E、F组,未进行振动干预组为A组,振动应变加载3天和6天时,应用RT-PCR方法检测破骨细胞特异性基因(TRAP、MMP-9和CATK)与OPG/RANKL的表达水平。结果:不同振动频率组破骨细胞特异性基因表达水平逐渐减低,同时B、C、D组逐渐上调OPG基因表达,而RANKL基因的表达逐渐下调。结论:不同频率振动应力均抑制RAW264.7细胞向成熟破骨细胞增殖分化。 Objective: To investigate effects of different ic genes and osteoprotegerin(OPG)/receptor cells in vitro induced differentiation process. frequency of vibration strain on the of activator for nuclear factor-r,B expression of osteoclast-specif- ligand(RANKL) in RAW264.7 Method: RAW264.7 cells were subjected to vibration strain with different frequency [3--10Hz (B-goup), 15-35Hz(C-group), 35--45Hz(D-group), 50---70Hz(E-group),70---90Hz(F-group)] and similar induced fluid. A-group cells were not subjected to vibration strain.The expressions of osteoclast-specific genes(TRAP, MMP-9 and CATK) and OPG/RANKL in osteoclasts were analyzed by semi-quantative RT-PCR. Result: In different frequency vibration groups, the expression levels of osteoclast-specific genes reduced gradu- ally, at the same time in B,C,D group vibration strain promote the expression of OPG mRNA and inhibit the expression of RANKL mRNA gradually. Conclusion: Different frequency of vibration strain can inhibit proliferation and differentiation of RAW264.7 cells into osteoclasts.
出处 《中国康复医学杂志》 CAS CSCD 北大核心 2014年第2期99-103,共5页 Chinese Journal of Rehabilitation Medicine
基金 福建省卫生厅青年基金资助项目(2011-2-49) 福建莆田市科技局资助项目(2011D02)
关键词 振动应力 RAW264 7细胞 分化 破骨细胞 骨保护素 骨质疏松 vibration strain: RAW264.7 cell differentiation osteoclast osteoprotegerin osteoporosis
  • 相关文献

参考文献16

  • 1Chang WH,Chen LT,Sun JS. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities[J].{H}BIOELECTROMAGNETICS,2004,(6):457-465.
  • 2Diniz P,Shomura K,Soejima K. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts[J].{H}BIOELECTROMAGNETICS,2002,(5):398-405.
  • 3Flieger J,Karachalios T,Khaldi L. Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats[J].{H}Calcified Tissue International,1998,(6):510-514.
  • 4Rubin C,Turner AS,Bain S. Anabolism.Low mechanical signals strengthen long bones[J].{H}NATURE,2001,(6847):603-604.
  • 5Robling AG,Hinant FM,Burr DB. Shorter,more frequent mechanical loading sessions enhance bone mass[J].{H}Medicine and Science in Sports and Exercise,2002,(2):196-202.
  • 6Simmons CA,Matlis S,Thornton AJ. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK 1/2) signaling pathway[J].{H}Journal of Biomechanics,2003,(8):1087-1096.
  • 7Rubin CT,Sommerfeldt DW,Judex S. Inhibition of osteopenia by low magnitude,high-frequency mechanical stimuli[J].{H}DRUG DISCOVERY TODAY,2001,(16):848-858.
  • 8Judex S,Boyd S,Qin YX. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load[J].{H}Annals of Biomedical Engineering,2003,(1):12-20.
  • 9Torstveit MK. Bone adaptation to mechanical loading[J].{H}Tidsskrift for den Norske laegeforening,2002,(21):2109-2111.
  • 10Burger EH,Klein-Nulen J. Responses of bone cells to biomechanical forces in vitro[J].{H}Advances in Dental Research,1999,(13):93-98.

二级参考文献27

  • 1江建明,狄勋元,张跃旋.骨折段细微运动对长骨干骨折愈合的影响系列研究(1)───形态学观察[J].中华骨科杂志,1996,16(4):249-252. 被引量:29
  • 2Donahue SW ,Jacobs CR, Donahue HJ. Flow-induced calcium oscillations in rat osteoblasts are age,loading frequency,and shear stress dependent.Am J Physiol Cell Physiol,2001,281:1635-1641.
  • 3Meyer U,Terodde M, Joose U, et al. Mechanical stimulation of osteoblastsin cell cultures. Mun Kiefer Gesichtschir,2001,5 :166-172.
  • 4Torstveit MK. Bone adaptation to mechanical loading. Tidsskr Nor Laegeforen, 2002,122 : 2109-2111.
  • 5Clinton RA,Simon T,Steven B,et al. Low mechanical signals strengthen long bones. Nature,2001,412:603-604.
  • 6Robling AG, Hinant FM, Burr DB, et al. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res,2002,17:1545-1554.
  • 7Srinivasan S, Weimer DA, Agans SC, et al. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res,2002,17:1613-1620.
  • 8Burger EH,Klein NJ. Responses of bone cells to biomechanical force in vitro. Adv Dent Res, 1999,13:93-98.
  • 9Chow JW,Fox SW, Lean JM, et al. Role of nitric oxide and prostaglandins in mechanically induced bone formation. J Bone Miner Res, 1998,13 : 1039-1044.
  • 10Thorsen K, Kristoffersson AO,Lerner UH, et al. In situ miccrodialysis in bone tissue. Stimulation of prostagtandin E2 Release by weight-bearing mechanical loading. J Clin Invest, 1996,98 : 2446-2449.

共引文献6

同被引文献33

  • 1喻鑫罡,张先龙,曾炳芳.低频可控性微动影响长骨骨折愈合的实验研究[J].中华创伤骨科杂志,2005,7(8):744-748. 被引量:24
  • 2刘石平,廖二元,伍贤平,曹行之,单鹏飞,苏欣.尿Ⅰ型胶原羧基末端肽和氨基末端肽排泄率与年龄、绝经和绝经后骨丢失的关系[J].中华医学杂志,2006,86(6):371-375. 被引量:11
  • 3刘应芬,李良,吴江,廖运茂,刘小菁,吴文超.流体剪应力对大鼠破骨细胞骨吸收活性的影响[J].生物医学工程学杂志,2007,24(3):544-548. 被引量:13
  • 4Lee CS, Szczesny SE, Soslowsky LJ. Remodeling and repair of orthopedic tissue: role of mechanical loading and biologies: part II: cartilage and bone. Am J Orthop (Belle Mead NJ) . 2011, 40 (3): 122-8.
  • 5Guo DW, Zhang QH, Li JW,et al. Fluid shear stress changes cell morphology and regulates the expression of ATP6V1A and TCIRG1 mRNA in rat osteoclasts. Mol Med Rep. 2010, 3 (1) : 173-8.
  • 6Suzuki N,Yoshimura Y, Deyama Y, et al. Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int J Mol Med. 2008, 21 (3) : 291-6.
  • 7Goltzman D,Hendy GN. The calcium -sensing receptor in bone -mechanistic and therapeutic insights. Nat Rev Endocrinol. 2015, 11 (5) : 298-307.
  • 8Li P, Liu C, Hu M, et al. Fluid flow -induced calcium response in osteoclasts: signaling pathways. Ann Biomed Eng. 2014,42 (6) : 1250-60.
  • 9Salameh A, Dhein S. Effects of mechanical forces and stretch on intercellular gap junction coupling.Biochim Biophys Acta. 2013, 1828 (1) : 147-56.
  • 10Mellis DJ, Itzstein C, Helfrich MH, et al. The skeleton: a multi —functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol.2011, 211(2) : 131-43.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部