摘要
(1)若 n= 2k(偶数)(F_(n+3)~2—F_(n+1)~2)~2+(2F_(n+4)· F_n)~2+(4F_(n+2))~2=(F_(n+3)~2+F_(n+1)~2)~2. (2)若n=2k+1(奇数) (F_(n+4)~2—F_n~2)~2+(2F_(n+3)·F_(n+1))~2+(4F_(n+2))~2=(F_(n+4)~2+F_n~2)~2. 在此:F_n,F_(n+1),F_(n+2),F_(n+3),F(n+4)连续五项.
In [1] Fibonacci: F_0=0, F_1=F_2 = 1, F_n = F_(n-1)+F_(n-2) (n≥2) If n is an even,then (3) (F_(n+4)·F_(n+1)~2 + (2F_(n+2)~2 = (F_(n+1)· F_(n+3))~2; If n is an odd,then (4) (F_n+3)· F_(n+1)~2 + (2F_(n+2)~2=(F_(n+4)F_n)~ 2. F. i. n=3, (8. 3)~2+ (2·5)~2=(13·2)~2,i. e. 24~2+10~2=26~2. We get Pythagoras Meets Fibonacci & Generalization. If n is an even,then (1) (F_(n+3)~2-F_(n+1)~2)~2 + (2F_(n+4)·F_n)~2 + (4F_(n+2))~2= (F_(n+3)~2+F_(n+1)~2)~2. If n is an odd,then (2) (F_(n+4)~2-F_n^2)~2 + (2F_(n+3)·F_(n+1))~2 + (4F_(n+2))~2=(F_(n+4)~2+F_n^2)~2.
出处
《黔东南民族师专学报》
2000年第3期11-12,共2页
Journal of Southeast Guizhou National Teachers College
关键词
菲波那契数列
毕达哥拉斯定理
Fibonacci
Pythagoras Meets
Pythagoras Meets Generalization