期刊文献+

菲波那契数列满足毕达哥拉斯定理的推广(英文)

Pythagoras Meets Fibonacci & Generalization
下载PDF
导出
摘要 (1)若 n= 2k(偶数)(F_(n+3)~2—F_(n+1)~2)~2+(2F_(n+4)· F_n)~2+(4F_(n+2))~2=(F_(n+3)~2+F_(n+1)~2)~2. (2)若n=2k+1(奇数) (F_(n+4)~2—F_n~2)~2+(2F_(n+3)·F_(n+1))~2+(4F_(n+2))~2=(F_(n+4)~2+F_n~2)~2. 在此:F_n,F_(n+1),F_(n+2),F_(n+3),F(n+4)连续五项. In [1] Fibonacci: F_0=0, F_1=F_2 = 1, F_n = F_(n-1)+F_(n-2) (n≥2) If n is an even,then (3) (F_(n+4)·F_(n+1)~2 + (2F_(n+2)~2 = (F_(n+1)· F_(n+3))~2; If n is an odd,then (4) (F_n+3)· F_(n+1)~2 + (2F_(n+2)~2=(F_(n+4)F_n)~ 2. F. i. n=3, (8. 3)~2+ (2·5)~2=(13·2)~2,i. e. 24~2+10~2=26~2. We get Pythagoras Meets Fibonacci & Generalization. If n is an even,then (1) (F_(n+3)~2-F_(n+1)~2)~2 + (2F_(n+4)·F_n)~2 + (4F_(n+2))~2= (F_(n+3)~2+F_(n+1)~2)~2. If n is an odd,then (2) (F_(n+4)~2-F_n^2)~2 + (2F_(n+3)·F_(n+1))~2 + (4F_(n+2))~2=(F_(n+4)~2+F_n^2)~2.
作者 郝稚传
出处 《黔东南民族师专学报》 2000年第3期11-12,共2页 Journal of Southeast Guizhou National Teachers College
关键词 菲波那契数列 毕达哥拉斯定理 Fibonacci Pythagoras Meets Pythagoras Meets Generalization
  • 相关文献

参考文献1

  • 1Willian Boulger.Pythagoras meets Fibonacci[].Mathenatics Teacher.1998

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部