摘要
本文通过将只能用于均匀线阵的PHD方法推广到稀疏线阵,同时将正性约束引入FOCUSS方法,得到了一种基于协方差、正性和l1范数约束进行协方差重建的迭代波达方向(DOA)估计方法。该方法利用了MUSIC方法忽略的反映阵列几何形状的协方差矩阵结构信息和DOA估计的稀疏约束信息,不仅突破了信号源个数小于阵元数的限制,并具有提高DOA估计性能的潜力。理论分析和仿真实验结果表明,这种迭代DOA估计方法一般经过数次迭代就能获得稳定的高分辨率DOA估计。
A recursive approach to DOA estimation has been developed by extending PHD method to sparse linear array and introducing positive constraint to FOCUSS method. Herein, we obtain the potential performance improvement of estimation and can estimate more sources by using the information about the structure of the covariance matrix and sparse character of DOA estimation, which was ignored by MUSIC method. Theory analysis and numerical results illustrate the convergence of this recursive DOA estimator with high resolution.
出处
《信号处理》
CSCD
2001年第1期13-16,4,共5页
Journal of Signal Processing