5E. R. Hunt. Stabilizing high period orbits in a chaotic system: The dioderesonator[J].Phys. Rev. Lett., 1991, 67(15) : 1953-1955.
6L. Hakansson, I. Claesson, P. O. H. Sturesson. Adaptive feedback control of machine-tool vibration based on the filteredxLMS-algorithm [J]. Journal of Low Frequency Noise & Vibration, 1998, 17; 199-213.
7Z. Y. Yan, P. Yu. Linear feedback control, adaptive feedback control and their combination forchaos (lag) synchronization of LC chaotic systems[J]. Chaos, Solitons and Fractals ,2007, 33: 419-435.
8K. Pyragas. Continuous control of chaos by self controlling feedback [J]. Phys. Lett. A, 1992, 170:421-428.
9S. Rajesh, V. M. Nandakumaran. Control of bistability in a directly modulatted semiconductor laser using delayed optoelectronic feedeback[J]. Physica D, 2006, 213 : 113-120.
10V. Bindu, V. M. Nandakumaran. Numerical studies on bidirectionally coupled directly modulated semiconductor lasers[J].Phys. Lett. A, 2000, 277:345-351.
3Liu Jiahui* Zhang Hongli, Song Dahua. The property of chaotic orbits with lower positions of numerical solutions in the logistic map[J]. Entropy, 2014, 16(11>:5618-5632.