期刊文献+

基于FBG非均匀反射谱特性的波纹型复合材料蒙皮渐进损伤监测 被引量:1

Progressive Damage Monitoring of Corrugated Composite Skins by the FBG Spectral Characteristics
下载PDF
导出
摘要 提出利用布拉格光纤光栅(FBG)非均匀反射谱监测复合材料结构渐进损伤的方法。对波纹型复合材料蒙皮样件进行有限元分析,预测蒙皮在拉伸载荷下失效过程和对应临界失效载荷大小,据此重构FBG传感器的非均匀反射谱,获得铺层失效与传感器反射谱的对应关系,并为实验光谱记录提供参考。构建一种基于FBG非均匀反射谱监测波纹型复合材料蒙皮渐进损伤的监测系统,进行拉伸实验,实验结果表明系统实测光谱与重构的反射谱趋势相同,对应失效载荷与预测值最大误差为8.6%,证明了采用FBG传感器监测波纹型复合材料蒙皮渐进损伤的可行性。该方法通过实时监测预测失效范围内FBG非均匀反射谱的变化,简单易行,测量及传导光路实现全光纤化,无需破坏试件结构,即可实现对波纹型复合材料蒙皮渐进损伤程度及铺层失效次序精确、迅速的在线监测,研究结果为智能蒙皮动态监测领域提供新的思路和实验参考。 In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FINg) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the nowuniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG nonuniform reflection spectrum monitoring system. The results indicate that real time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8. 6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBC- non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corrugated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to op- erate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new i- deas and experimental reference for the field of dynamic monitoring of smart skin.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第3期757-761,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51075207) 航空基金项目(2011ZA52013)资助
关键词 光纤布拉格光栅 光谱分析 波纹型复合材料蒙皮 渐进损伤 有限元分析 Fiber Bragg grating (FBG) Spectrum analysis~ Corrugated composite skins Progressive damage Finite element analysis
  • 相关文献

参考文献13

  • 1Icardi U, Ferrero L. Journal of Aerospace Engineering, 2010, 24(1).- 140.
  • 2Sofla A, Meguid S, Tan K, et al. Materials and Design, 2010, 31(3) : 1284.
  • 3Mieloszyk M, Krawczuk M, Skarbek L, et al. Smart Materials and Structures, 2011, 20(12): 125014.
  • 4Panopoulou A, Roulias D, Loutas T H, et al. Strain, 2012, 48(3): 267.
  • 5Papantoniou A, Rigas G, Alexopoulos N D, et al. Composite Structures, 2011, 93(9): 2163.
  • 6Webb S, Shin P, Peters K, et al. International Society for Optics and Photonics, 2013.
  • 7Bernasconi A, Carboni M, Comolli L, et al. Procedia Engineering, 2011, 10: 207.
  • 8Minakuchi S, Takeda N, Takeda S, et al. Composites Part A: Applied Science and Manufacturing, 2011, 42(6) : 669.
  • 9Huang H M, Yuan S F. Optoelectronics Letters, 2011, 7(2): 109.
  • 10常园园,许希武,郭树祥.压缩载荷下复合材料整体加筋板渐进损伤非线性数值分析[J].复合材料学报,2011,28(4):202-211. 被引量:18

二级参考文献30

  • 1Li Jun, Yao Xuefeng, Liu Yinghua, et al. A study of the integrated composite material structures under different fabrication processing [J]. Composites Pait A, 2009, 40(4) 455-462.
  • 2Yap J W H, Scott M L, Thomson R S. The analysis of skin- to-stiffener dehonding in composite aerospace structures [J]. Composite Structures, 2002, 57(1 - 4) : 425-435.
  • 3Orifiei A C, de Zarate Alberdi lnigo Ortiz, Thomson R S, et aI. Compression and post buckling damage growth and collapse analysis of flat composite stiffened panels [J]. Composites Science and Technology, 2008, 68(15/16) : 3150- 3160.
  • 4Krueger R, Cvitkovich M K, O'Brien T K, et al. Testing and analysis of composite skin stringer debonding under multi-axial loading, NASA/TM - 1999 - 209097 [R]. Washington: NASA, 1999.
  • 5SteventsK A, Ricci R, Davies G A O. Buckling and postbuekling of composite structures [J]. Composites, 1995, 26(3) : 189-199.
  • 6Elalsi F,Colak L. Buckling and post- buckling behavior of compression loaded composite panels with hat stiffeners [J]. Journal of Reinforced Plastics and Composites, 2009, 28(20) : 2501-2509.
  • 7Krueger R, O'Brien T K. A shell/3D modeling technique for the analysis of delaminated composite laminates [ J ]. Composites Part A, 2001, 32(1): 25-44.
  • 8Jones R, Alesi H. On the analysis of composite structures with material and geometric non- linearities [J]. Composite Structures, 2000, 50(4): 417-431.
  • 9Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross- ply composite laminates using cohesive interface elements [J]. Composites Science and Technology, 2008, 68(12): 2382-2390.
  • 10Turon A, Camanho P P, Costa J, et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading [J]. Mechanics of Materials, 2006, 38 (11) :1072-1089.

共引文献21

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部