期刊文献+

Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization 被引量:7

Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization
原文传递
导出
摘要 In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine,a servo motor driven constant pump hydraulic system is designed for a precision injection molding process,which uses a servo motor,a constant pump,and a pressure sensor,instead of a common motor,a constant pump,a pressure proportion valve,and a flow proportion valve.A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process.Simulation results showed that this control method has good control precision and quick response. In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine, a servo motor driven constant pump hydraulic system is designed for a precision injection molding process, which uses a servo motor, a constant pump, and a pressure sensor, instead of a common motor, a constant pump, a pressure pro-portion valve, and a flow proportion valve. A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process. Simulation results showed that this control method has good control precision and quick response.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第2期139-146,共8页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.61203299) the Fundamental Research Funds for the Central Universities(No.2013QNA4021) the Natural Science Foundation of Zhejiang Province(Nos.Y1110135 and LY12F03018) the Qianjiang Talents Program of Zhejiang Province,China(No.2013R10047)
关键词 Model predictive control Recurrent neural network Neurodynamic optimization Injection molding machine Model predictive control, Recurrent neural network, Neurodynamic optimization, Injection molding machine
  • 相关文献

参考文献27

  • 1Akesson, B.M., Toivonen, H.T., 2006. A neural network model predictive controller. J. Process Contr., 16(9):937- 946. [doi: 10.1016/j.jprocont.2006.06.001 ].
  • 2Draeger, A., Engell, S., Ranke, H., 1995. Model predictive control using neural networks. IEEE Contr. Syst., 15(5): 61-66. [doi: 10.1109/37.466261 ].
  • 3Dubay, R., 2002. Self-optimizing MPC of melt temperature in injection moulding. ISA Trans., 41(1):81-94. [doi:10. 1016/S0019-0578(07)60204-3 ].
  • 4Gao, F., Patterson, W.I., Kamal, M.R., 1996. Cavity pressure dynamics and self-tuning control for filling and packing phases of thermoplastics injection molding. Polym. Eng. Sci., 36(9):1272-1285. [doi:10.1002/pen.10521].
  • 5Gao, F.R., Yang, Y., Shao, C., 2001. Robust iterative learning control with applications to injection molding process. Chem. Eng. Sci., 56(24):7025-7034. [doi:10.1016/S0009- 2509(01)00339-6].
  • 6Hopfield, J.J., Tank, D.W., 1985. "Neural" computation of decisions in optimization problems. Biol. Cybern., 52(3): 141-152. [doi: 10.1007/BF00339943].
  • 7Hu, X.L., Wang, J., 2008. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application. 1EEE Tran. Neur. Networks, 19(12):2022-2031. [doi:10.1109/TNN.2008. 2003287].
  • 8Huang, S.N., Tan, K.K., Lee, T.H., 1999a. Predictive control of ram velocity in injection molding. Polym. Plast. Technol. Eng., 38(2):285-303. [doi: 10.1080/0360255990 9351578].
  • 9Huang, S.N., Tan, K.K., Lee, T.H., 1999b. Adaptive GPC control of melt temperature in injection moulding. ISA Trans., 38(4):361-373. [doi:10.1016/S0019-0578(99)000 29-4].
  • 10Huang, S.N., Tan, K.K, Lee, T.H., 2004. Neural-network- based predictive learning control of ram velocity in in- jection molding. IEEE Trans. Syst. Man Cybern. C, 34(3 ): 363-368. [doi:10.1109/TSMCC.2004.829304].

同被引文献37

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部