期刊文献+

基于数值模拟研究岩石材料冲击载荷下的动态抗压强度增强 被引量:4

Investigation on Dynamic Compressive Strength Enhancement of Rock Materials Under Impact Loading Based on Numerical Simulations
下载PDF
导出
摘要 为了确定岩石材料在SHPB实验中的真实应变率效应,需要去除实验中的横向惯性效应和端面摩擦效应作用引起的动态抗压强度增量。本文假定材料的真实应变率效应、横向惯性效应和端面摩擦效应三者不相关,基于数值模拟的方法确定岩石材料的横向惯性效应和端面摩擦效应。将从SHPB实验中得到的动态抗压强度数据减去分别由横向惯性效应和端面摩擦效应引起的动态压缩强度增强量,即可获得岩石类材料在SHPB实验中的真实应变率效应。 Rock materials will unavoidably subjected to blast and impact loadings during the mining activities, and thus damage will be induced. Split Hopkinson pressure bar (SHPB) technique is often used to characterize the dynamic compressive strength of rock materials under impact loading. Many experimental results showed that, the dynamic compressive strength of rock materials increase with the increase of testing strain-rate. Besides, it has been found recently that the dynamic compressive strength enhancement of rock materials under impact loading is due to the combined effects of material strain-rate, lateral inertial and end friction, and in SHPB tests they are coupled together and could not be separated from each other. To determine the material strain-rate effect of the rock materials themselves in SHPB tests, the dynamic compressive strength enhancement caused by lateral inertial effect and end friction effect needs to be removed. Assuming that the effect of material strain-rate, lateral inertia and end friction is uncoupled, the numerical simulation method is employed to simulate the SHPB tests on rock materials. Thus, the lateral inertial effect and end friction effect can be separately determined with the method of numerical simulations. Then removing the dynamic compressive strength enhancement caused respectively by the lateral inertial effect and end friction effect from the dynamic compressive strength data obtained from actual SHPB tests, the material strain-rate effect of the rock materials in SHPB tests is determined.
出处 《矿物学报》 CAS CSCD 北大核心 2014年第1期131-136,共6页 Acta Mineralogica Sinica
基金 国家自然科学基金(编号:51308480) 国家人力资源和社会保障部资助(编号:11zs0103) 四川省非金属复合与功能材料重点实验室-省部共建国家重点实验室培育基地开放基金(编号:10zxfk06)
关键词 岩石材料 冲击载荷 动态抗压强度 应变率效应 侧向围压效应 SHPB实验 rock material impact loading dynamic compressive strength strain-rate effect lateral confinement effect SHPB test
  • 相关文献

参考文献2

二级参考文献32

  • 1肖燕妮,王耀华,毕亚军,陆明,韩军,张宏梅.增强活性粉末混凝土抗侵彻试验[J].解放军理工大学学报(自然科学版),2005,6(3):262-264. 被引量:8
  • 2王德荣,葛涛,周泽平,王明洋.钢纤维超高强活性混凝土(RPC)抗侵彻计算方法研究[J].爆炸与冲击,2006,26(4):367-372. 被引量:16
  • 3李夕兵.冲击荷载下岩石能耗及破碎力学性质的研究[硕士学位论文][D].长沙:中南工业大学,1986.
  • 4KRAUTHAMMERA T,ELFAHALA M M,LIM J,et al.Size effect for high-strength concrete cylinders subjected to axial impact[J].International Journal of Impact Engineering,2003,28(9):1 001-1 016.
  • 5ELFAHALA M M,KRAUTHAMMERA T,OHNOB T,et al.Size effect for normal strength concrete cylinders subjected to axial impact[J].International Journal of Impact Engineering,2005,31(4):461-481.
  • 6BACON R.On experimental science[C]// THATCHER O J ed.The Early Medieval World.Milwaukee:University Research Extension Co.,1901:369-376.
  • 7VAN MIER J G M,VAN VLIET M R A.Influence of microstructure of concrete on size/scale effects in tensile fracture[J].Engineering Fracture Mechanics,2003,70(26):2 281-2 306.
  • 8PRATT H R,BLACK A D,BROWN W S,et al.The effect of specimen size on the mechanical properties of unjointed diorite[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1972,9(4):513-516.
  • 9KADLECEK V,MODRY S,KADLECEK V J.Size effect of test specimens on tensile splitting strength of concrete:general relation[J].Materials and Structures,2002,35(1):28-34.
  • 10MAEKAWA I,HIDA J.Damage produced by pulsating impact contact load[J].Journal of the Society of Materials Science,Japan,1980,29(320):486-491.

共引文献87

同被引文献72

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部