期刊文献+

稠油油藏蒸汽驱开发蒸汽突破预测模型 被引量:3

Forecast model for steam breakthrough during steam drive exploration of inspissated pool
原文传递
导出
摘要 稠油油藏蒸汽驱开发,只有提前预测出蒸汽突破井,及时采取防汽窜措施,才能避免产油量急剧下降,增大蒸汽波及体积及热利用率,提高油藏最终采收率.基于油田常规生产动态数据,将承载蒸汽突破信息的生产动态指标转化为评价标度的概率分布,计算其累积分布函数及期望,运用随机占优准则,对累积分布函数逐点进行两两比较,得到各指标之间的随机占优关系,然后建立总体优序度矩阵,计算出生产井蒸汽突破时机先后的排序值,并对所有生产井的蒸汽突破先后进行排序,最终建立了考虑多指标的蒸汽驱开发蒸汽突破预测模型.实例应用表明,模型预测结果与实际相符,为油藏蒸汽驱开发动态调控指明方向. During steam drive exploration of inspissated pool, only by forecasting steam breakthrough and taking measures to prevent steam channeling will avoid the decrease of oil production, enlarge swept volume of steam, increase heat utilization ratio and enhance oil recovery. Based on routine field performance data, the production performance index hosting steam breakthrough was transformed into the probability distribution of evaluation index and its cumulative distribution function and expectation were calculated. By applying random predomination principle and comparing each pair of CDF, random predomination relation among all the indexes was obtained. Then we establish an overall optimal sequence degrees matrix, calculate the sort order of production well steam breakthrough timing and sort the production well steam breakthrough tinting. Finally, the multi-index forecast model for steam breakthrough during steam drive exploration of inspissated pool was established. Case application demonstrates that the results got by forecast model correspond with reality and forecast model enlightens steam drive exploration of inspissated pool.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第2期538-544,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(50974128) 国家科技重大专项(2011ZX05030-005-04)
关键词 稠油油藏 蒸汽驱 蒸汽突破 预测模型 随机占优准则 inspissated pool steam drive steam breakthrough forecast model random predominationprinciple
  • 相关文献

参考文献6

二级参考文献23

  • 1徐选华,陈晓红.基于矢量空间的群体聚类方法研究[J].系统工程与电子技术,2005,27(6):1034-1037. 被引量:42
  • 2陈晓红,徐选华,曾江洪.基于熵权的多属性大群体决策方法[J].系统工程与电子技术,2007,29(7):1086-1089. 被引量:38
  • 3Hwang C L, Lin M J. Group decision making under multiple criteria[M].Berlin : Springer Verlag, 1987.
  • 4Zahir S. Clusters in a group: decision making in the vector space formulation of the analytic hierarchy process [J]. European Journal of Operational Re,search, 1999,112 (3):620- 634.
  • 5Herrera F, Herrera V E, Chiclana F. Multiperson decision-making based on multiplicative preference relations[J]. European Journal of Operational Research, 2001,129 (2) : 372- 385.
  • 6Shih H S, Shyur H J, Lee E S. An extension of TOPSIS for group decision making [J ]. Mathematical and Computer Modelling,2007.45(7):801- 813.
  • 7Jiang Y P, Fan Z P, Ma J. A method for group decision making with multi-granularity linguistic assessment information[J]. Information Sciences. 2008,178(4) 1098-1109.
  • 8Martel J M,Zaras K. Stochastic dominance in multi- criterion analysis under risk[J]. Theory and Decision,1995,39(1) .31-49.
  • 9Nowak M. Preference and vote thresholds in multi- criteria analysis based on stochastic dominance[J]. European Journal of Operational Research, 2004, 158(2):339- 350.
  • 10Graves S B, Ringuest J L. Probabilistic dominance criteria for comparing uncertain alternatives: a tutoria[J]. Omega, 2009,37(2) : 346- 357.

共引文献98

同被引文献74

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部