期刊文献+

一种面向划分的数组数据流分析方法

Array Data-flow Analysis Method for Partition
下载PDF
导出
摘要 传统数组数据流分析方法主要针对精确依赖测试、数组私有化等研究,无法为划分提供数组在循环间详细的定义-引用信息.本文提出了一种面向划分的数组数据流分析方法,通过定义-引用图来表示数组的数据流信息.首先根据嵌套循环的并行性和结构特点,建立定义-引用图的结点集.然后基于活跃-引用和精确数据流分析,在循环内求出数组的定义、引用等数组区域.最后根据数据流方程和过程间分析添加定义-引用边.通过对矩阵求逆等七个实际用例的实验结果表明,定义-引用图的引用能够使划分算法对并行收益做出准确的评估,并减少了生成代码的通信冗余,提升了并行程序的加速比. The traditional analysis methods of array data-flow focus on accurate dependence testing and array privatization, etc. And they can't offer detailed information of array's define-use inter-loops. For partition, this paper proposes a new array data-flow analysis method, which represents array's data-flow information loops by define-use graph. The method establishes the vertex set of graph first according to loop's characteristics of parallelism and structure. Then it analyzes array section of definition and use in loop based on live-use and accurate flow analysis, and add define-use edges by data-flow equations and inter-procedural analysis. The experimental results on Matrix-Inversion and other six applications show that, define-use graph can make partition algorithm did a more accurate as- sessment of parallel benefits, reduce the communication redundancy of code generated and rise up the speedup.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第3期532-537,共6页 Journal of Chinese Computer Systems
基金 国家"核高基"重大专项子课题项目(2009AA01220 2009zx10036-001-001)资助
关键词 数组数据流 划分 自动并行化 分布存储 array data-flow partition automatic parallelization distributed memory
  • 相关文献

参考文献16

  • 1Feautrier P. Dataflow analysis of array and scalar references[ J]. In- ternational Journal of Parallel Programming, 1991,2 ( 1 ) :23-53.
  • 2Maydan D E, Amarasinghe S P, Lain M S. Army data-flow analysis and its use in array privatization[ C]. Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on POPL '93,1993:2-15.
  • 3Tomofumi Y, Sanjay R. Canonic multi-projection:memory alloca- tion for distributed memory parallelization [ R]. CSl1-106, Colo- rado: Colorado State University ,2011.
  • 4Wang S S, Zhao R C, Pang J M. Improvement and implementation of accurate array data-flow analysis [ C ]. Proceedings of The 2006 International Conference on Parallel & Distributed Processing Tech- niques and Applications & Conference on Real - Time Computing Systems & Applications (PDPTA'06) ,2006.
  • 5Gu J ,Li Z. Efficient interprocedural array data-flow analysis for au- tomatic program parallelization[ J]. IEEE Transactions on Software Engineering, 2000,26 ( 3 ) : 244-261.
  • 6Bosilca G,Bouteiller A,Danalis A,et al. From serial loops to paral- lel execution on distributed systems [ C ]. In: Kaklamanis C, Papa- theodorou T, Spirakis P G ed. Parallel Processing, Proceedings of 18th Euro-Par 2012, 2012:246-257.
  • 7钟洪涛,舒继武,温冬婵,郑纬民.基于区域图数据流分析的通信优化算法[J].软件学报,2003,14(2):175-182. 被引量:5
  • 8Gong X R, Zhao R C, Lu L S. Communication optimization algo- rithms based on extended data flow graph [ C ]. Proceedings of the 8th ACIS International Conference on SSNPD '07,2007:3-8.
  • 9Kwon O, Jubair F, Eigenmann R, et al. A hybrid approach of OpenMP for clusters[ C]. Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming ( PPoPP12 ) ,2012:75-84.
  • 10Kwon O, Jubair F, Min S J. Automatic scaling of OpenMP beyond shared memory [ C ]. Proceedings of the 24th International Work- shop on Laboratoire Central des Ponts et Chausees ( LCPC ' 11 ), 2011.

二级参考文献23

  • 1[1]Balasundaram V, Fox G, Kennedy K, Kremer U. An interactive environment for data partitioning and distribution. In: Charleston SC, ed. Proceedings of the 5th Distributed Memory Computing Conference. New York: ACM Press, 1990.
  • 2[2]Banerjee P, Chandy JA, Gupta M, Hodges IVEW, Holm JG, Lain A, Palermo DJ, Ramaswamy S, Su E. The PARADIGM compiler for distributed-memory multicomputers. IEEE Computer, 1995,28(10):37~47.
  • 3[3]Adve V, Mellor-Crummey J, Sethi A. An integer set framework for HPF analysis and code generation. Technical Report, TR97-275, Computer Science Department, Rice University. 1997.
  • 4[4]Knuth DE. An empirical study of FORTRAN programs. Software-Practice and Experience, 1971,1(2):105~134.
  • 5[5]Johnson SP, Ierotheou CS, Cross M. Automatic parallel code generation for message passing on distributed memory systems. Parallel Computing, 1996,22(2):227~258.
  • 6[6]Allen FE, Cocke J. A program data flow analysis procedure. Communications of the ACM, 1978,19(3):137~174.
  • 7[7]Tarjan RE. Finding dominators in directed graphs. SIAM Journal of Computing, 1974,3(1):62~89.
  • 8[8]Atkinson DC, Griswold WG. Implementation techniques for efficient data-flow analysis of large programs. In: Anneliese AA, Aniello C, eds. Proceedings of the IEEE International Conference on Software Maintenance. Italy: University of Sannio Press, 2001. 52~61.
  • 9[9]Kandemir M, Banerjee P, Choudhary A, et al. A global communication optimization technique based on data-flow analysis and linear algebra. ACM Transactions on Programming Languages and Systems (TOPLAS), 1999,21(6):1251~1297.
  • 10[10]Hall MW, Murphy BR, Amarasinghe SP, Liao S, Lam MS. Interprocedural analysis for parallelization. In: Huang CH, Sadayappan P, Banerjee U, eds. Proceedings of the 8th International Workshop on LCPC. Columbus, Ohio: Springer-Verlag, 1995. 61~80.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部