期刊文献+

适用于高维多类数据分类的并行非线性最小二乘法分类器 被引量:1

Parallel Nonlinear Least Squares for High Dimensional Multi-class Data Classification
下载PDF
导出
摘要 最小二乘法(LS)分类器是一种基础但有效的分类器,尤其适用于解决大规模数据分类问题.LS方法需要求逆矩阵,这使得LS方法在处理高维数据问题时效率低下.为此,提出基于LS的并行化非线性方法(PNLS).通过随机地划分数据维,PNLS能够并行地计算局部模型参数,经过迭代优化,形成最终的全局解.PNLS方法具有三个特点:1)局部线性但全局非线性;2)避免求解大矩阵的逆,适合处理高维数据;3)通过并行计算,能够提高学习效率.另外,理论分析证明了PNLS方法的收敛性.本文进一步提出一种随机版本的PNLS方法,它在每次迭代过程中随机分割数据维以优化PNLS的性能.实验结果表明,与最小二乘法相比,本文提出的方法可以获得更好的预测精度和运行效率. least squares( LS ) classifier is a basic but effective classifier, especially for solving large-scale data classification problems. LS method needs to invert the matrix whose size is determined by the dimensionality, which makes it inherently inefficient for dealing with high-dimensional data. In this paper, we propose a parallel nonlinear version of LS { PNLS ). Based on random dimensionality par- titioning, PNLS can obtain local model parameters in parallel. After an iterative optimization, PNI.~ forms the final global solution. At the same time, PNLS enjoys three properties: 1 ) PNLS is a locally linear but globally nonlinear method; 2) It can avoid inverting large matrix, which makes it suitable for high-dimensional data; and 3 ) It can calculate model parameters in parallel, which can improve learning efficiency. Besides, theoretical analysis proves the iterative PNLS method is convergent. In the paper, we also propose a ran- dom PNLS with randomly partitioned data in each iteration to optimize the performance of PNLS. Experimental results on text and im- age data demonstrate that the proposed methods can obtain better prediction accuracy and runtime efficiency than LS.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第3期579-583,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61250007 U1204610)资助 国家"八六三"高技术研究发展计划重点项目(2009AA012201)资助 中国博士后科学基金项目(2011M501189)资助
关键词 最小二乘法 并行 高维度 分类 least squares parallel high dimensionality classification
  • 相关文献

参考文献1

二级参考文献25

  • 1郭崇慧,孙建涛,陆玉昌,唐焕文.线性支持向量机优化问题的极大熵方法[J].小型微型计算机系统,2006,27(7):1383-1387. 被引量:2
  • 2罗武庭.DJ—2可变矩形电子束曝光机的DMA驱动程序[J].LSI制造与测试,1989,10(4):20-26. 被引量:373
  • 3Hmeidia I, Hawashina B, El-Qawasmeh E. Performance of KNN and SVM classifiers on full word Arabic articles [ J ]. Advanced Engineering Informatics, 2008,22 ( 1 ) : 106 - 111.
  • 4Li Kang, Peng Jian-xun. Neural input selection: a fast modelbased approach[ J]. Neurocomputing, 2007,70 (4-6) :762-769.
  • 5Tan C P, Lani N F M, Lai W K. Application of support vector machine classifier for security surveillance system [ C ]. In: Proceedings of the 4th lASTED International Conference on Advances in Computer Science and Technology, 2008.
  • 6Tan S B, Zhang J. An empirical study of sentiment analysis for Chinese documents[ J]. Expert Systems with Applications, 2008, 34 (4) :2622 -2629.
  • 7Kerrthi S, Chapelle O, DeCoste D. Building support vector machines with reduced classifier complexity[ J]. Journal of Machine Learning Research, 2006,7 : 1493-1515.
  • 8Tikhonov A N, Arscnin V Y. Solutions of Ill-posed problems [M]. New York: John Wiley and Sons, 1977.
  • 9Lawson C L, Hanson R J. Solving least squares problems[ M]. Englewood Cliffs, New Jersey: Prentice Hall, 1974.
  • 10Hastie T, Tibsgirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction [ M ]. New York: Springer Press, 2003.

共引文献2

同被引文献21

  • 1Daniel PB, Pierluigi C. Introduction to the theory of complexity. Prentice Hall. ISBN 0-13-915380-2,1994.
  • 2Zou H, Hastie T. Regularizafion and variable selection via the elastic net. J. R. Statist. Soc. B ,2005,67:301-320.
  • 3Hoed A, Kennar R. Ridge regression. In Encyclopedia of Statistical Sciences, 1998,8 : 129-136.
  • 4Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 1996,58:267-288.
  • 5Efron B, Hastie T, Johnstone I, et al. Least angle regression. Ann. Statist. ,2004,32:407-499.
  • 6Zou H. The adaptive lasso and its oracle properties. Journal of the A- merican Statistical Association ,2006,101 : 1418-1429.
  • 7Li ZT, Mikko J, Sillanpaa. Overview of lasso-related penalized re- gression methods for quantitative trait mapping and genomic selec- tion. Theor Appl Genet,2012,125:419-435.
  • 8Scheetz T, Kim K, et al. Regulation of gene expression in the mam- malian eye and its revevance to eye disease. Proc. Natl. Acad. Sci, 2006,103 : 14429-14434.
  • 9Patrick B, Jian H. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat Comput,2015,25 : 173-187.
  • 10Zou H, Hastie T. Regression shrinkage and selection via the elastic net, with application to microarrays,2003 ,1-26.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部