期刊文献+

带人工粘性的二维可压欧拉方程强稀疏波的渐近稳定性

Asymptotic stability of strong rarefaction wave for the two-dimensional compressible Euler equation with an artificial viscosity
原文传递
导出
摘要 本文研究了一个带人工粘性的二维可压欧拉方程的解收敛于一维稀疏波的渐近行为.如果初值适当接近一个常数并且它们在x=±!的渐近值被选择,那么解收敛于一维稀疏波.由于不要求稀疏波的小强度,因此作者给出了二维可压欧拉方程强稀疏波的非线性稳定.证明方法利用了一维稀疏波的稳定性结果和L2能量方法. This paper is concerned with the asymptotic behavior toward one-dimensional rarefaction wave of the solution of two-dimensional compressible Euler equation with an artificial viscosity. The solution is proved to tend toward the one-dimensional rarefaction wave as t→ ∞, provided that the initial data are suitably close to a constant state and their asymptotic values at x =±∞ are chosen. Since it is not re- quired the strength of the rarefaction wave to be small, the result gives the nonlinear stability of strong rarefaction wave for the two-dimensional compressible Euler equation. The proof is given by the stability results of one-dimensional rarefaction wave and the elementary L2 energy method.
作者 孟义杰 丁凌
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期21-30,共10页 Journal of Sichuan University(Natural Science Edition)
基金 湖北省教育厅科学技术研究计划项目(D20112605 Q20122504)
关键词 强稀疏波 可压欧拉方程 渐近稳定性 Strong rarefaction wave Compressible Euler equation Asymptotic stability
  • 相关文献

参考文献15

  • 1Hokari H, Matsumura A. Asymptotics toward one- dimensiona rarefaction wave for the solution of two- dimensional compressible Euler equation with an arti- ficial viscosity[J]. Asymptotic Anal, 1997, 15 : 283.
  • 2Hattori Y, Nishihara K. A note on the stability of the rarefaction wave of the Burgers equation[J]. Ja- pan J Indust Appl Math, 1991, 8: 85.
  • 3Itaya N. On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid[J]. Kodai Math Sere Rep, 1971, 23: 60.
  • 4Itaya N. On the initial value problem of the motion of compressible viscous fluid, especially on the problem of uniqueness[J]. Math Kyoto Univ, 1976, 16: 413.
  • 5Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimen- sional gas motion[J]. Comm Math Phys, 1985, 101 (1) : 97.
  • 6Kawashima S, Matsumura A, Nishihara K. Asymp- totic behavior of solutions for the equations of a vis- cous heat-conductive gas[J]. Proe Japan Acad Ser A, 1986, 62: 249.
  • 7Liu T P. Nonlinear stability of shock waves for vis- cous conservation laws [J]. Memoirs Amer Math Soc, 1985, 328(56): 1.
  • 8Liu T P. Shock waves for compressible Navier- Stokes equations are stable[J]. Comm Pure Appl Math, 1986, 39; 565.
  • 9Liu T P, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations[J]. Comm Math Phys, 1988, 118: 451.
  • 10Matsumura A, Nishida T. The initial value problem for the equation of motion of viscous and heat-con-ductive gases[J]. J Math Kyoto Univ, 1980, 20: 67.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部