期刊文献+

广义logistic分布的收敛速度(英文) 被引量:5

Convergence rate of extreme for the generalized logistic distribution
原文传递
导出
摘要 本文作者考虑了独立同分布情形下广义logistic分布和混合广义logistic分布最大值的渐进分布及其赋范常数,并得到了相应的最大值收敛到极值分布的点点收敛速度. In this paper, the asymptotic distributions of the maximum of i. i. d. random variables obeying the generalized logistic distribution and the mixed generalized logistic distribution are studied. The asso- ciated pointwise convergence rates of the distributions of maximum to its extreme value limits are ob- tained.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期47-52,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11071199)
关键词 极值分布 广义logistic分布 混合分布 收敛速度 Extreme value distribution Generalized logistic distribution Mixed distribution Conver-gence rate
  • 相关文献

参考文献3

  • 1A. K. Olapade.On extended type I generalized logistic distribution[J].International Journal of Mathematics and Mathematical Sciences.2004(57)
  • 2Saralees Nadarajah,Samuel Kotz.A generalized logistic distribution[J].International Journal of Mathematics and Mathematical Sciences.2005(19)
  • 3毛瑞华,李竹渝.随机单位根过程[J].四川大学学报(自然科学版),2006,43(6):1192-1196. 被引量:1

二级参考文献6

  • 1Tsay R. Analysis of Financial Time Series[M]. New York:Willey, 2002.
  • 2Granger C W J, Swanson N R. An introduction of stochastic unit root[J]. Journal of Econometrics, 1997, 80:35.
  • 3Hamilton J.时间序列分析[M].北京:中国社会科学出版社,1999.
  • 4Billingsley P. Convergence of Probabitlity Measures[ M]. New York: Wiley, 1968.
  • 5Pak Wing Fong, Wai Keung Li. On time series with randomized unit mot and randomized seasonal unit rcot[J]. Computational Statistics & Data Analysis, 2003, 43 : 369.
  • 6McCabe B P M, Tremayne A R. Testing a time series for difference stationarity[J]. Annals of Statistics, 1995, 23(3) :1015.

同被引文献47

  • 1刘珂,彭作祥.条件矩的收敛速度[J].西南大学学报(自然科学版),2007,29(1):5-8. 被引量:4
  • 2LIAO X,PENG Z X,NADARAJAH S.Tail Behavior and Limit Distribution of Maximum of Logarithmic General Error Distribution[R].United Kingdom:Manchester University,2012.
  • 3LIAO X,PENG Z X.Convergence Rates of Limit Distribution of Maxima of Lognormal Samples[J].Journal of Mathematical Analysis and Applications,2012 (395):643-653.
  • 4PENG Z X,LIN F M,NADARAJAH S.Convergence Rate of Extremes for the General Error Distribution[J].Journal of Applied Probability,2010(47):668-679.
  • 5LIN F M,ZHANG X H,PENG Z X,et al.On the Rate of Convergence of STSD Extremes[J].Communications in Statistics-Theory and Methods,2011,40(10):1795-1806.
  • 6CHEN S Q,HUANG J W.Rates of Convergence of Extreme for Asymmetric Normal Distribution[J].Statistics and Probability Letters,2014(84):158-168.
  • 7RESNICK S I.Extreme value,Regular Variation,and Point Processes[M].New York:Springer,1987.
  • 8LEADBETTER M R,LINDGREN G,ROOTZEN H.Extremes and Related Properties of Random Sequences and Processes[M].New York:Springer,1983.
  • 9AZZALINI A. A Class of Distributions Which Includes the Normal Ones [J]. Scandinavian Journal of Statistics, 1985, 12(2) : 171-178.
  • 10HALL P. On the Rate of Convergence of Normal Extremes [J]. Journal of Applied Probability, 1979, 16 (2): 433-439.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部