期刊文献+

分布式协同网络用电负荷分层加权概率预测方法 被引量:15

Feature weighting based hierarchical probabilistic load forecasting in distributed collaborative network
下载PDF
导出
摘要 先进计量体系(AMI)是智能电网中的分布式协同网络,其通过广泛布置的分布式测量计算节点对用电端的用户用电信息进行测量和协同分析。基于分布式协同网络测量得到的海量数据,针对短期用电负荷的概率预测问题提出一种分层特征加权概率预测方法。该方法采用核主分量分析提取用电负荷测量样本的非线性特征,根据提取的特征采用马氏距离判据对用电负荷数据进行特征加权,剔除权重低的不相关干扰数据;提出将经验模态分解与稀疏贝叶斯学习方法相结合的机器学习用电负荷概率预测方法,对用电负荷高频与低频分量进行分层概率分布预测。最后,将所提出的方法应用于某地区的短期用电负荷预测实验,实验结果表明该方法能够有效预测短期用电负荷的概率分布,预测精度高、可靠性好。 Advanced metering infrastructure (AMI) is a type of distributed collaborative network, which measures and processes demand-side load information through extensively deployed sensing and computing nodes in smart grid. Based on the massive data collected by AMI, this paper explores a feature weighting hierarchical probabilistic predic- tion approach for short-term load probabilistic forecast. This method adopts kernel based principal component analysis to extract the non-linear characteristics of the load measurement samples;according to the extracted characteristics, Mahalanobis distance criterion is used to carry out the feature weighting of the load data and prune the uncorrelatcd interference data with low weight. A machine learning load probabilistic prediction method is proposed, which com- bines sparse Bayesian learning with empirical mode decomposition;and the hierarchical probabilistic distribution pre- diction for the high and low frequency components of the load is achieved. The proposed method was applied to the short-term load forecasting experiment in a certain district, and the experiment results illustrate that the proposed ap- proach exhibits better performance in comparison with the original SBL model, and has the advantages of high forecas- ting accuracy and high reliability.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第2期241-246,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61272428) 教育部博士点基金(20120002110067)资助项目
关键词 分布式协同网络 用电负荷预测 特征加权 分层预测 稀疏贝叶斯学习 distributed collaborative network load forecasting feature weighting hierarchical forecasting sparseBayesian learning (SBL)
  • 相关文献

参考文献11

  • 1冯奇斌,蒋平,吕国强.面向先进制造的分布式测量系统研究[J].仪器仪表学报,2007,28(2):347-351. 被引量:2
  • 2WANG X,WANG SH. Collaborative signal processing for target tracking in distributed wireless sensor networks[J].{H}JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING,2007,(05):501-515.doi:10.1016/j.jpdc.2007.02.001.
  • 3PAPALEXOPOULOS A D,HESTERBERG T C. A regression-based approach to short-term system load forecasting[J].{H}IEEE Transactions on Power Systems,1990,(04):1535-1547.
  • 4SAPANKEVYC N,SANKAR R. Time series prediction using support vector machines:A survey[J].Computational Intelligence Magazine,2009,(02):24-38.
  • 5KHOSRAVI A,NAHAVANDI S. Interval type-2 fuzzy logic systems for load forecasting:a comparative study[J].{H}IEEE Transactions on Power Systems,2012,(03):1274-1282.
  • 6FELICE M,XIN Y. Short-term load forecasting with neural network ensembles:A comparative study[J].IEEE Computational Intelligence Magazine,2011,(03):47-56.
  • 7CHEN B,CHANG M. Load forecasting using support vector machines:A study on EUNITE competition 2001[J].{H}IEEE Transactions on Power Systems,2004,(04):1821-1830.
  • 8TIPPING M. Sparse bayesian learning and the relevance vector machine[J].J Mach Learn Res,2001.211-244.
  • 9REIS A,SILVA A. Feature extraction via multiresolution analysis for short-term load forecasting[J].{H}IEEE Transactions on Power Systems,2005,(01):189-198.doi:10.1109/TPWRS.2004.840380.
  • 10吴江伟,王雪,孙欣尧.采用二次经验模态筛选的谐波辨识方法[J].仪器仪表学报,2012,33(11):2401-2406. 被引量:5

二级参考文献10

  • 1BRATOUKHINE A,PENYA Y K,SAUTER T.Intelligent software agents in plant automation[C].Proceedings of 3rd International NAISO Symposium on Engineering of Intelligent Systems,Malaga,2002:77-83.
  • 2LUO X CH,LIU D J,YE D,et al.Multi-agent based distributed measurement systems in CORBA environment[C].Proceeding of IEEE Instrumentation and Measurement Technology Conference,Budapest,Hungary,2001:821-826.
  • 3BROSE G,VOGEL A,DUDDY K.Java programming with CORBA[M].3rd ed.Canada:John Wiley & Sons Inc,2001:33-82.
  • 4FININ T,LABROU Y,MAYFIELD J.KQML as an Agent communication language[M].Cambringe:Software Agents,MIT Press,Cambridge,1997:1-22.
  • 5JEON H,PETRIE C,CUTKOSKY M R.JATLite:a Java Agent infrastructure with message routing[J].IEEE Internet Computing,2000,4(2):87-96.
  • 6MAGEDANZ T,BAUMER C,BREUGST M,et al.Grasshopper-a universal Agent platform based on OMG MASIF and FIPA standards[DB/OL].http://www.cordis.lu/infoWin/acts/analysys/products/thematic/agents/ch4/ch4/htm,2005-03.
  • 7JENNINGS N R,SYCARA K,WOOLDBRIDGE M.A roadmap of agent research and development in autonomous agents and multi-agent systems[M].Boston:Kluwer Academic Publishers,1998:3-38.
  • 8易吉良,彭建春,罗安,谭会生.电能质量信号的改进S变换降噪方法[J].仪器仪表学报,2010,31(1):32-37. 被引量:26
  • 9蔡艳平,李艾华,张玮,许平.HHT端点效应的最大Lyapunov指数边界延拓方法[J].仪器仪表学报,2011,32(6):1330-1336. 被引量:22
  • 10沈艳,古天祥.基于CORBA和Agent技术的分布式测量系统研究[J].电子测量与仪器学报,2003,17(1):67-71. 被引量:4

共引文献5

同被引文献167

引证文献15

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部