期刊文献+

模糊解耦在UUV回收运动控制中的应用 被引量:1

Application of Fuzzy Decoupling Method in UUV Recycle Movement Control
下载PDF
导出
摘要 在回收过程中,UUV对水平面运动的控制精度有很高的要求。以BSA-UUV为平台,构建水平面操纵非线性方程,在此模型的基础上,分析了多阶段回收过程中的主要耦合变量和耦合原因。针对水平面运动中航向控制与横向运动之间的强耦合问题,基于模糊理论和解耦理论设计一种解耦补偿器,由模糊补偿器的输入输出隶属度函数,根据模糊补偿规则,经过模糊推理合成运算和清晰化运算,得出解耦补偿量。仿真结果显示加入模糊解耦控制器以后,有效降低了系统的超调量,提高了控制精度,表明模糊解耦控制方法在UUV回收运动控制中有很高的应用价值。 During the recycle progress, the vehicle has a high demand for the control accuracy. Based on BSA-UUV,, this paper established a simplified kinetic model to describe the motion of UUV in the horizontal plane, which is consisted by some nonlinear equations. On the basis of this model, the main coupling variables and coupling reasons were analysed during recycle. Aiming at the strong coupling problem between the heading control and sway movement, a decoupling compensator is designed based on the fuzzy theory and the decoupling theory, according to the rules of fuzzy compensation, by the input and ou^out membership functions of fuzzy compensator, through compose operation and clear operation of fuzzy reasoning, obtained decoupling compensation quantity. Simulation results show that the fuzzy decoupling controller effectively reduces the overshoot of the system, improve the control precision, and show that the fuzzy decoupling control method has a high application value in the recovery mission.
出处 《船舶工程》 北大核心 2014年第1期71-75,共5页 Ship Engineering
基金 国家自然科学基金(51309067/E091002) 中央高校基本科研业务费专项资金资助(HEUCF041330)
关键词 UUV回收 运动控制 模糊理论 解耦补偿器 UUV recycle movement control fuzzy theory decoupling compensator
  • 相关文献

参考文献8

二级参考文献21

  • 1刘丙杰,胡昌华.模糊定性仿真的相似原理及其改进[J].系统仿真学报,2006,18(4):856-858. 被引量:2
  • 2徐建安,王玉甲,张铭钧.自主式水下机器人试验平台研制与实验研究[J].哈尔滨工程大学学报,2007,28(2):212-217. 被引量:13
  • 3吕舒平.[D].哈尔滨:哈尔滨工程大学,2000.
  • 4Tong S C,Tang J T.Fuzzy Adaptive Control of Multivariable Nonlinear Systems[J].Fuzzy Sets and Systems,2000,111(2):153-167.
  • 5Jian X X,Jing X.New Fuzzy Logic Learning Control Scheme for Repetitive Trajectory Tracking Problems[J].Fuzzy Sets and Systems,2003,133(1):57-75.
  • 6Imthias A T P,Nagebdra R P S.A Reinforcement Learning Approach to Automatic Generation Control[J].Electric Power Systems Research,2002,63(1):9-26.
  • 7BREDEWEG B, SALLES P, BOUWER A, et al. Towards a structured approach to building qualitative reasoning mod- els and simulations [ J ]. Ecological Informaties, 2008, 3 (1) : 1-12.
  • 8CALADO J M F, COSTA J M G, BARTYS M, et al. FDI approach to the DAMADICS benchmark problem based on qualitative reasoning coupled with fuzzy neural networks [ J ]. Control Engineering Practice, 2006, 14(6) : 685-698.
  • 9QIANG S, ROY L. Fuzzy qualitative simulation [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23 (4) : 1038-1061.
  • 10LI Ke, LAN Wai, WANG Jun. DMA and multithread pro- gram control technology computer sample system of vibration signal[J]. Energy Procedia, 2011, 13(1) : 6662-6669.

共引文献61

同被引文献22

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部