期刊文献+

一类解析函数类的凸性 被引量:1

On the convexity of certain subclass of analytic functions
下载PDF
导出
摘要 定义一类新的解析函数类BS(n,p,μ,α)(μ≥0,0≤α<p),并利用解析函数理论,研究3类积分算子函数Hn(z),H(z),G(z)的凸性和α阶凸性,得到一些新的结论. In this paper, we defined a subclass of analytic tunctions BS(n,p,μ,α)(μ≥0,0≤α〈P) and studied the convexity and a-order convexity for some general integral operators Hn (z), H(z), G(z) by using theories of analytic functions. Several results were also considered.
出处 《湖北大学学报(自然科学版)》 CAS 2014年第2期166-169,共4页 Journal of Hubei University:Natural Science
基金 湖北省教育科学"十二五"规划课题(2012B310) 长江大学工程技术学院考研项目(YJ201114) 科研发展基金资助
关键词 解析函数 星象函数 凸性 积分算子 analytic functuions starlike functions convexity integral operator
  • 相关文献

参考文献7

二级参考文献15

  • 1杨定恭.关于亚纯p叶函数的新子类[J].Journal of Mathematical Research and Exposition,1995,15(1):7-13. 被引量:1
  • 2陈建兰,韦叶,刘金林.由算子定义的解析函数的卷积性质[J].扬州大学学报(自然科学版),2006,9(4):4-6. 被引量:10
  • 3[1]Miller S S,Mocanu PT. Second order differential inequalities in the complex plane[J]. J Math Anal Appl, 1978, 65: 289-305.
  • 4Noor K I. On new classes of integral operators[J]. J Natur Geom, 1999,16(3):71--80.
  • 5LIU Jin-lin, Noor K I. On subordinations for certain analytic functions associated with Noor integral operator[J].Appl Math & comput, 2007, 187(2): 1453--1460.
  • 6Cho N E. The Noor integral operator and strongly close-to-convex functions [J]. J Math Anal Appl, 2003, 283(1):202--212.
  • 7Mac Gregor T H. Functions whose derivative has a positive real part [J]. Trans Amer Math Soc, 1962, 104: 532--537.
  • 8SRIVASTAVA H M,PATEL J.Some subclasses of multivalent functions involving a certain linear operator[J].J Math Anal Appl,2005,310:209-228.
  • 9LIU Jin-lin,SRIVASTAVA H M.Classes of meromorphically multivalent functions associated with the generalized hypergeometeic function[J].Math Comput Modelling,2004,39:21-34.
  • 10LIU Jin-lin,SRIVASTAVA H M.Subclasses of meromorphically multivalent functions associated with a certain linear operator[J].Math Comput Modelling,2004,39:35-44.

共引文献3

同被引文献17

  • 1Darwish H E, Magesh N. On certain subclasses of multivalent analytic functions involving the catas operator [J].Acta Universitatis Apulensis, 2013,36: 209-224.
  • 2Owa S. Some properties of certain muhivalent functions [ J ]. Appl Math Lett, 1991,4 (5) : 79-83.
  • 3Patil D A, Thakare N K. On convex hulls and extreme points of p-valent starlike and convex classes with applications [J]. Bull Math Soc Sci Math, 1983,27(2) : 145-160.
  • 4Bharati R, Parvatham R, Swaminathan A. On subclasses of uniformly convex functions and corresponding class of starlike functions[J]. Tamkang J Math, 1997,28(1 ) : 17-32.
  • 5Goodman A W. On uniformly convex functions [J ]. Ann Polon Math, 1991,56( 1 ) : 87-92.
  • 6Kanas S,Wisniowska A. Conic regions and k-uniform convexity[J].J Comput Appl Math, 1999, 105( 1 ) : 327-336.
  • 7Nishiwaki J, Owa S. Certain classes of analytic functions concerned with uniformly starlike and convex functions [J]. Appl Math Comput, 2007,187 : 350-355.
  • 8Catas A.On certain classes of p-valent functions defined by multiplier transform presented paper [C]. Proceedings of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, 2007.
  • 9Acu M, Owa S. Note on a class of starlike functions [C].Proceedings of the International Short Joint Work on Study on Calculus Operators in Univalent Functions Theory, Kyoto, Japan, 2006.
  • 10A1-Oboudi F M. On univalent functions defined by a generalized Salagean operator [ J ]. Int J Math Math Sci, 2004,25 : 1429- 1436.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部